2 resultados para behavioural experiments

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

KAM is a computer program that can automatically plan, monitor, and interpret numerical experiments with Hamiltonian systems with two degrees of freedom. The program has recently helped solve an open problem in hydrodynamics. Unlike other approaches to qualitative reasoning about physical system dynamics, KAM embodies a significant amount of knowledge about nonlinear dynamics. KAM's ability to control numerical experiments arises from the fact that it not only produces pictures for us to see, but also looks at (sic---in its mind's eye) the pictures it draws to guide its own actions. KAM is organized in three semantic levels: orbit recognition, phase space searching, and parameter space searching. Within each level spatial properties and relationships that are not explicitly represented in the initial representation are extracted by applying three operations ---(1) aggregation, (2) partition, and (3) classification--- iteratively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a recent experiment, Freedman et al. recorded from inferotemporal (IT) and prefrontal cortices (PFC) of monkeys performing a "cat/dog" categorization task (Freedman 2001 and Freedman, Riesenhuber, Poggio, Miller 2001). In this paper we analyze the tuning properties of view-tuned units in our HMAX model of object recognition in cortex (Riesenhuber 1999) using the same paradigm and stimuli as in the experiment. We then compare the simulation results to the monkey inferotemporal neuron population data. We find that view-tuned model IT units that were trained without any explicit category information can show category-related tuning as observed in the experiment. This suggests that the tuning properties of experimental IT neurons might primarily be shaped by bottom-up stimulus-space statistics, with little influence of top-down task-specific information. The population of experimental PFC neurons, on the other hand, shows tuning properties that cannot be explained just by stimulus tuning. These analyses are compatible with a model of object recognition in cortex (Riesenhuber 2000) in which a population of shape-tuned neurons provides a general basis for neurons tuned to different recognition tasks.