4 resultados para automated text classification
em Massachusetts Institute of Technology
Resumo:
There are numerous text documents available in electronic form. More and more are becoming available every day. Such documents represent a massive amount of information that is easily accessible. Seeking value in this huge collection requires organization; much of the work of organizing documents can be automated through text classification. The accuracy and our understanding of such systems greatly influences their usefulness. In this paper, we seek 1) to advance the understanding of commonly used text classification techniques, and 2) through that understanding, improve the tools that are available for text classification. We begin by clarifying the assumptions made in the derivation of Naive Bayes, noting basic properties and proposing ways for its extension and improvement. Next, we investigate the quality of Naive Bayes parameter estimates and their impact on classification. Our analysis leads to a theorem which gives an explanation for the improvements that can be found in multiclass classification with Naive Bayes using Error-Correcting Output Codes. We use experimental evidence on two commonly-used data sets to exhibit an application of the theorem. Finally, we show fundamental flaws in a commonly-used feature selection algorithm and develop a statistics-based framework for text feature selection. Greater understanding of Naive Bayes and the properties of text allows us to make better use of it in text classification.
Resumo:
We compare Naive Bayes and Support Vector Machines on the task of multiclass text classification. Using a variety of approaches to combine the underlying binary classifiers, we find that SVMs substantially outperform Naive Bayes. We present full multiclass results on two well-known text data sets, including the lowest error to date on both data sets. We develop a new indicator of binary performance to show that the SVM's lower multiclass error is a result of its improved binary performance. Furthermore, we demonstrate and explore the surprising result that one-vs-all classification performs favorably compared to other approaches even though it has no error-correcting properties.
Resumo:
A difficulty in the design of automated text summarization algorithms is in the objective evaluation. Viewing summarization as a tradeoff between length and information content, we introduce a technique based on a hierarchy of classifiers to rank, through model selection, different summarization methods. This summary evaluation technique allows for broader comparison of summarization methods than the traditional techniques of summary evaluation. We present an empirical study of two simple, albeit widely used, summarization methods that shows the different usages of this automated task-based evaluation system and confirms the results obtained with human-based evaluation methods over smaller corpora.
Resumo:
Co-training is a semi-supervised learning method that is designed to take advantage of the redundancy that is present when the object to be identified has multiple descriptions. Co-training is known to work well when the multiple descriptions are conditional independent given the class of the object. The presence of multiple descriptions of objects in the form of text, images, audio and video in multimedia applications appears to provide redundancy in the form that may be suitable for co-training. In this paper, we investigate the suitability of utilizing text and image data from the Web for co-training. We perform measurements to find indications of conditional independence in the texts and images obtained from the Web. Our measurements suggest that conditional independence is likely to be present in the data. Our experiments, within a relevance feedback framework to test whether a method that exploits the conditional independence outperforms methods that do not, also indicate that better performance can indeed be obtained by designing algorithms that exploit this form of the redundancy when it is present.