3 resultados para asset pricing tests

em Massachusetts Institute of Technology


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose a nonparametric method for estimating derivative financial asset pricing formulae using learning networks. To demonstrate feasibility, we first simulate Black-Scholes option prices and show that learning networks can recover the Black-Scholes formula from a two-year training set of daily options prices, and that the resulting network formula can be used successfully to both price and delta-hedge options out-of-sample. For comparison, we estimate models using four popular methods: ordinary least squares, radial basis functions, multilayer perceptrons, and projection pursuit. To illustrate practical relevance, we also apply our approach to S&P 500 futures options data from 1987 to 1991.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce and explore an approach to estimating statistical significance of classification accuracy, which is particularly useful in scientific applications of machine learning where high dimensionality of the data and the small number of training examples render most standard convergence bounds too loose to yield a meaningful guarantee of the generalization ability of the classifier. Instead, we estimate statistical significance of the observed classification accuracy, or the likelihood of observing such accuracy by chance due to spurious correlations of the high-dimensional data patterns with the class labels in the given training set. We adopt permutation testing, a non-parametric technique previously developed in classical statistics for hypothesis testing in the generative setting (i.e., comparing two probability distributions). We demonstrate the method on real examples from neuroimaging studies and DNA microarray analysis and suggest a theoretical analysis of the procedure that relates the asymptotic behavior of the test to the existing convergence bounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes two programs for generating tests for digital circuits that exploit several kinds of expert knowledge not used by previous approaches. First, many test generation problems can be solved efficiently using operation relations, a novel representation of circuit behavior that connects internal component operations with directly executable circuit operations. Operation relations can be computed efficiently by searching traces of simulated circuit behavior. Second, experts write test programs rather than test vectors because programs are more readable and compact. Test programs can be constructed automatically by merging program fragments using expert-supplied goal-refinement rules and domain-independent planning techniques.