1 resultado para alliance
em Massachusetts Institute of Technology
Filtro por publicador
- JISC Information Environment Repository (1)
- Repository Napier (2)
- Aberystwyth University Repository - Reino Unido (7)
- Aquatic Commons (30)
- Archive of European Integration (14)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (3)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital de la Universidad Católica Argentina (4)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (11)
- Biblioteca Valenciana Digital - Ministerio de Educación, Cultura y Deporte - Valencia - Espanha (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (33)
- Brock University, Canada (6)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Cambridge University Engineering Department Publications Database (13)
- CentAUR: Central Archive University of Reading - UK (8)
- Center for Jewish History Digital Collections (10)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (4)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (3)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Cornell: DigitalCommons@ILR (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Archives@Colby (4)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (6)
- DigitalCommons@The Texas Medical Center (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (139)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (4)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (2)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (277)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (2)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (17)
- Indian Institute of Science - Bangalore - Índia (3)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (1)
- Open University Netherlands (2)
- Portal de Revistas Científicas Complutenses - Espanha (11)
- Publishing Network for Geoscientific & Environmental Data (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (18)
- Queensland University of Technology - ePrints Archive (172)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Institucional da Universidade Federal de São Paulo - UNIFESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (2)
- South Carolina State Documents Depository (3)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (1)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (2)
- Université de Montréal, Canada (8)
- University of Michigan (50)
- University of Queensland eSpace - Australia (20)
- University of Washington (1)
Resumo:
This memo describes the initial results of a project to create a self-supervised algorithm for learning object segmentation from video data. Developmental psychology and computational experience have demonstrated that the motion segmentation of objects is a simpler, more primitive process than the detection of object boundaries by static image cues. Therefore, motion information provides a plausible supervision signal for learning the static boundary detection task and for evaluating performance on a test set. A video camera and previously developed background subtraction algorithms can automatically produce a large database of motion-segmented images for minimal cost. The purpose of this work is to use the information in such a database to learn how to detect the object boundaries in novel images using static information, such as color, texture, and shape. This work was funded in part by the Office of Naval Research contract #N00014-00-1-0298, in part by the Singapore-MIT Alliance agreement of 11/6/98, and in part by a National Science Foundation Graduate Student Fellowship.