3 resultados para active distribution system

em Massachusetts Institute of Technology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report documents the design and implementation of a binocular, foveated active vision system as part of the Cog project at the MIT Artificial Intelligence Laboratory. The active vision system features a three degree of freedom mechanical platform that supports four color cameras, a motion control system, and a parallel network of digital signal processors for image processing. To demonstrate the capabilities of the system, we present results from four sample visual-motor tasks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This research project is a study of the role of fixation and visual attention in object recognition. In this project, we build an active vision system which can recognize a target object in a cluttered scene efficiently and reliably. Our system integrates visual cues like color and stereo to perform figure/ground separation, yielding candidate regions on which to focus attention. Within each image region, we use stereo to extract features that lie within a narrow disparity range about the fixation position. These selected features are then used as input to an alignment-style recognition system. We show that visual attention and fixation significantly reduce the complexity and the false identifications in model-based recognition using Alignment methods. We also demonstrate that stereo can be used effectively as a figure/ground separator without the need for accurate camera calibration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A system for visual recognition is described, with implications for the general problem of representation of knowledge to assist control. The immediate objective is a computer system that will recognize objects in a visual scene, specifically hammers. The computer receives an array of light intensities from a device like a television camera. It is to locate and identify the hammer if one is present. The computer must produce from the numerical "sensory data" a symbolic description that constitutes its perception of the scene. Of primary concern is the control of the recognition process. Control decisions should be guided by the partial results obtained on the scene. If a hammer handle is observed this should suggest that the handle is part of a hammer and advise where to look for the hammer head. The particular knowledge that a handle has been found combines with general knowledge about hammers to influence the recognition process. This use of knowledge to direct control is denoted here by the term "active knowledge". A descriptive formalism is presented for visual knowledge which identifies the relationships relevant to the active use of the knowledge. A control structure is provided which can apply knowledge organized in this fashion actively to the processing of a given scene.