1 resultado para action learning.
em Massachusetts Institute of Technology
Filtro por publicador
- JISC Information Environment Repository (1)
- Repository Napier (3)
- Aberdeen University (2)
- Aberystwyth University Repository - Reino Unido (5)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (15)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (17)
- Boston University Digital Common (1)
- Brock University, Canada (7)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- Cambridge University Engineering Department Publications Database (8)
- CentAUR: Central Archive University of Reading - UK (36)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (1)
- Cochin University of Science & Technology (CUSAT), India (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Dalarna University College Electronic Archive (4)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (5)
- Digital Peer Publishing (2)
- Digital Repository at Iowa State University (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (10)
- DRUM (Digital Repository at the University of Maryland) (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- Escola Superior de Educação de Paula Frassinetti (1)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (2)
- Glasgow Theses Service (2)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (4)
- Indian Institute of Science - Bangalore - Índia (20)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (4)
- Línguas & Letras - Unoeste (2)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (2)
- Portal de Revistas Científicas Complutenses - Espanha (5)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (27)
- Queensland University of Technology - ePrints Archive (567)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (3)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- Scielo España (1)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (4)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal (1)
- Université de Montréal, Canada (5)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (3)
- University of Queensland eSpace - Australia (7)
- University of Southampton, United Kingdom (2)
- University of Washington (2)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (5)
Resumo:
Humans rapidly and reliably learn many kinds of regularities and generalizations. We propose a novel model of fast learning that exploits the properties of sparse representations and the constraints imposed by a plausible hardware mechanism. To demonstrate our approach we describe a computational model of acquisition in the domain of morphophonology. We encapsulate phonological information as bidirectional boolean constraint relations operating on the classical linguistic representations of speech sounds in term of distinctive features. The performance model is described as a hardware mechanism that incrementally enforces the constraints. Phonological behavior arises from the action of this mechanism. Constraints are induced from a corpus of common English nouns and verbs. The induction algorithm compiles the corpus into increasingly sophisticated constraints. The algorithm yields one-shot learning from a few examples. Our model has been implemented as a computer program. The program exhibits phonological behavior similar to that of young children. As a bonus the constraints that are acquired can be interpreted as classical linguistic rules.