11 resultados para Zigzag edges
em Massachusetts Institute of Technology
Resumo:
We present a novel ridge detector that finds ridges on vector fields. It is designed to automatically find the right scale of a ridge even in the presence of noise, multiple steps and narrow valleys. One of the key features of such ridge detector is that it has a zero response at discontinuities. The ridge detector can be applied to scalar and vector quantities such as color. We also present a parallel perceptual organization scheme based on such ridge detector that works without edges; in addition to perceptual groups, the scheme computes potential focus of attention points at which to direct future processing. The relation to human perception and several theoretical findings supporting the scheme are presented. We also show results of a Connection Machine implementation of the scheme for perceptual organization (without edges) using color.
Resumo:
The problem of detecting intensity changes in images is canonical in vision. Edge detection operators are typically designed to optimally estimate first or second derivative over some (usually small) support. Other criteria such as output signal to noise ratio or bandwidth have also been argued for. This thesis is an attempt to formulate a set of edge detection criteria that capture as directly as possible the desirable properties of an edge operator. Variational techniques are used to find a solution over the space of all linear shift invariant operators. The first criterion is that the detector have low probability of error i.e. failing to mark edges or falsely marking non-edges. The second is that the marked points should be as close as possible to the centre of the true edge. The third criterion is that there should be low probability of more than one response to a single edge. The technique is used to find optimal operators for step edges and for extended impulse profiles (ridges or valleys in two dimensions). The extension of the one dimensional operators to two dimentions is then discussed. The result is a set of operators of varying width, length and orientation. The problem of combining these outputs into a single description is discussed, and a set of heuristics for the integration are given.
Resumo:
This paper presents a new method of grouping edges in order to recognize objects. This grouping method succeeds on images of both two- and three- dimensional objects. So that the recognition system can consider first the collections of edges most likely to lead to the correct recognition of objects, we order groups of edges based on the likelihood that a single object produced them. The grouping module estimates this likelihood using the distance that separates edges and their relative orientation. This ordering greatly reduces the amount of computation required to locate objects and improves the system's robustness to error.
Resumo:
The recognition of objects with smooth bounding surfaces from their contour images is considerably more complicated than that of objects with sharp edges, since in the former case the set of object points that generates the silhouette contours changes from one view to another. The "curvature method", developed by Basri and Ullman [1988], provides a method to approximate the appearance of such objects from different viewpoints. In this paper we analyze the curvature method. We apply the method to ellipsoidal objects and compute analytically the error obtained for different rotations of the objects. The error depends on the exact shape of the ellipsoid (namely, the relative lengths of its axes), and it increases a sthe ellipsoid becomes "deep" (elongated in the Z-direction). We show that the errors are usually small, and that, in general, a small number of models is required to predict the appearance of an ellipsoid from all possible views. Finally, we show experimentally that the curvature method applies as well to objects with hyperbolic surface patches.
Resumo:
We consider the problem of detecting a large number of different classes of objects in cluttered scenes. Traditional approaches require applying a battery of different classifiers to the image, at multiple locations and scales. This can be slow and can require a lot of training data, since each classifier requires the computation of many different image features. In particular, for independently trained detectors, the (run-time) computational complexity, and the (training-time) sample complexity, scales linearly with the number of classes to be detected. It seems unlikely that such an approach will scale up to allow recognition of hundreds or thousands of objects. We present a multi-class boosting procedure (joint boosting) that reduces the computational and sample complexity, by finding common features that can be shared across the classes (and/or views). The detectors for each class are trained jointly, rather than independently. For a given performance level, the total number of features required, and therefore the computational cost, is observed to scale approximately logarithmically with the number of classes. The features selected jointly are closer to edges and generic features typical of many natural structures instead of finding specific object parts. Those generic features generalize better and reduce considerably the computational cost of an algorithm for multi-class object detection.
Resumo:
This thesis presents a new high level robot programming system. The programming system can be used to construct strategies consisting of compliant motions, in which a moving robot slides along obstacles in its environment. The programming system is referred to as high level because the user is spared of many robot-level details, such as the specification of conditional tests, motion termination conditions, and compliance parameters. Instead, the user specifies task-level information, including a geometric model of the robot and its environment. The user may also have to specify some suggested motions. There are two main system components. The first component is an interactive teaching system which accepts motion commands from a user and attempts to build a compliant motion strategy using the specified motions as building blocks. The second component is an autonomous compliant motion planner, which is intended to spare the user from dealing with "simple" problems. The planner simplifies the representation of the environment by decomposing the configuration space of the robot into a finite state space, whose states are vertices, edges, faces, and combinations thereof. States are inked to each other by arcs, which represent reliable compliant motions. Using best first search, states are expanded until a strategy is found from the start state to a global state. This component represents one of the first implemented compliant motion planners. The programming system has been implemented on a Symbolics 3600 computer, and tested on several examples. One of the resulting compliant motion strategies was successfully executed on an IBM 7565 robot manipulator.
Resumo:
How much information about the shape of an object can be inferred from its image? In particular, can the shape of an object be reconstructed by measuring the light it reflects from points on its surface? These questions were raised by Horn [HO70] who formulated a set of conditions such that the image formation can be described in terms of a first order partial differential equation, the image irradiance equation. In general, an image irradiance equation has infinitely many solutions. Thus constraints necessary to find a unique solution need to be identified. First we study the continuous image irradiance equation. It is demonstrated when and how the knowledge of the position of edges on a surface can be used to reconstruct the surface. Furthermore we show how much about the shape of a surface can be deduced from so called singular points. At these points the surface orientation is uniquely determined by the measured brightness. Then we investigate images in which certain types of silhouettes, which we call b-silhouettes, can be detected. In particular we answer the following question in the affirmative: Is there a set of constraints which assure that if an image irradiance equation has a solution, it is unique? To this end we postulate three constraints upon the image irradiance equation and prove that they are sufficient to uniquely reconstruct the surface from its image. Furthermore it is shown that any two of these constraints are insufficient to assure a unique solution to an image irradiance equation. Examples are given which illustrate the different issues. Finally, an overview of known numerical methods for computing solutions to an image irradiance equation are presented.
Resumo:
An investigation is made into the problem of constructing a model of the appearance to an optical input device of scenes consisting of plane-faced geometric solids. The goal is to study algorithms which find the real straight edges in the scenes, taking into account smooth variations in intensity over faces of the solids, blurring of edges and noise. A general mathematical analysis is made of optimal methods for identifying the edge lines in figures, given a raster of intensities covering the entire field of view. There is given in addition a suboptimal statistical decision procedure, based on the model, for the identification of a line within a narrow band on the field of view given an array of intensities from within the band. A computer program has been written and extensively tested which implements this procedure and extracts lines from real scenes. Other programs were written which judge the completeness of extracted sets of lines, and propose and test for additional lines which had escaped initial detection. The performance of these programs is discussed in relation to the theory derived from the model, and with regard to their use of global information in detecting and proposing lines.
Resumo:
The report describes a recognition system called GROPER, which performs grouping by using distance and relative orientation constraints that estimate the likelihood of different edges in an image coming from the same object. The thesis presents both a theoretical analysis of the grouping problem and a practical implementation of a grouping system. GROPER also uses an indexing module to allow it to make use of knowledge of different objects, any of which might appear in an image. We test GROPER by comparing it to a similar recognition system that does not use grouping.
Resumo:
This thesis develops a model for the topological structure of situations. In this model, the topological structure of space is altered by the presence or absence of boundaries, such as those at the edges of objects. This allows the intuitive meaning of topological concepts such as region connectivity, function continuity, and preservation of topological structure to be modeled using the standard mathematical definitions. The thesis shows that these concepts are important in a wide range of artificial intelligence problems, including low-level vision, high-level vision, natural language semantics, and high-level reasoning.
Resumo:
In the absence of cues for absolute depth measurements as binocular disparity, motion, or defocus, the absolute distance between the observer and a scene cannot be measured. The interpretation of shading, edges and junctions may provide a 3D model of the scene but it will not inform about the actual "size" of the space. One possible source of information for absolute depth estimation is the image size of known objects. However, this is computationally complex due to the difficulty of the object recognition process. Here we propose a source of information for absolute depth estimation that does not rely on specific objects: we introduce a procedure for absolute depth estimation based on the recognition of the whole scene. The shape of the space of the scene and the structures present in the scene are strongly related to the scale of observation. We demonstrate that, by recognizing the properties of the structures present in the image, we can infer the scale of the scene, and therefore its absolute mean depth. We illustrate the interest in computing the mean depth of the scene with application to scene recognition and object detection.