3 resultados para Zero reference level
em Massachusetts Institute of Technology
Resumo:
The dynamic power requirement of CMOS circuits is rapidly becoming a major concern in the design of personal information systems and large computers. In this work we present a number of new CMOS logic families, Charge Recovery Logic (CRL) as well as the much improved Split-Level Charge Recovery Logic (SCRL), within which the transfer of charge between the nodes occurs quasistatically. Operating quasistatically, these logic families have an energy dissipation that drops linearly with operating frequency, i.e., their power consumption drops quadratically with operating frequency as opposed to the linear drop of conventional CMOS. The circuit techniques in these new families rely on constructing an explicitly reversible pipelined logic gate, where the information necessary to recover the energy used to compute a value is provided by computing its logical inverse. Information necessary to uncompute the inverse is available from the subsequent inverse logic stage. We demonstrate the low energy operation of SCRL by presenting the results from the testing of the first fully quasistatic 8 x 8 multiplier chip (SCRL-1) employing SCRL circuit techniques.
Resumo:
We address mid-level vision for the recognition of non-rigid objects. We align model and image using frame curves - which are object or "figure/ground" skeletons. Frame curves are computed, without discontinuities, using Curved Inertia Frames, a provably global scheme implemented on the Connection Machine, based on: non-cartisean networks; a definition of curved axis of inertia; and a ridge detector. I present evidence against frame alignment in human perception. This suggests: frame curves have a role in figure/ground segregation and in fuzzy boundaries; their outside/near/top/ incoming regions are more salient; and that perception begins by setting a reference frame (prior to early vision), and proceeds by processing convex structures.
Resumo:
A program that simulates a Digital Equipment Corporation PDP-11 computer and many of its peripherals on the AI Laboratory Time Sharing System (ITS) is described from a user's reference point of view. This simulator has a built in DDT-like command level which provides the user with the normal range of DDT facilities but also with several special debugging features built into the simulator. The DDT command language was implemented by Richard M. Stallman while the simulator was written by the author of this memo.