3 resultados para Wisconsin Home Economics Curriculum and Evaluation Project.
em Massachusetts Institute of Technology
Resumo:
Parallel shared-memory machines with hundreds or thousands of processor-memory nodes have been built; in the future we will see machines with millions or even billions of nodes. Associated with such large systems is a new set of design challenges. Many problems must be addressed by an architecture in order for it to be successful; of these, we focus on three in particular. First, a scalable memory system is required. Second, the network messaging protocol must be fault-tolerant. Third, the overheads of thread creation, thread management and synchronization must be extremely low. This thesis presents the complete system design for Hamal, a shared-memory architecture which addresses these concerns and is directly scalable to one million nodes. Virtual memory and distributed objects are implemented in a manner that requires neither inter-node synchronization nor the storage of globally coherent translations at each node. We develop a lightweight fault-tolerant messaging protocol that guarantees message delivery and idempotence across a discarding network. A number of hardware mechanisms provide efficient support for massive multithreading and fine-grained synchronization. Experiments are conducted in simulation, using a trace-driven network simulator to investigate the messaging protocol and a cycle-accurate simulator to evaluate the Hamal architecture. We determine implementation parameters for the messaging protocol which optimize performance. A discarding network is easier to design and can be clocked at a higher rate, and we find that with this protocol its performance can approach that of a non-discarding network. Our simulations of Hamal demonstrate the effectiveness of its thread management and synchronization primitives. In particular, we find register-based synchronization to be an extremely efficient mechanism which can be used to implement a software barrier with a latency of only 523 cycles on a 512 node machine.
Resumo:
This thesis describes some aspects of a computer system for doing medical diagnosis in the specialized field of kidney disease. Because such a system faces the spectre of combinatorial explosion, this discussion concentrates on heuristics which control the number of concurrent hypotheses and efficient "compiled" representations of medical knowledge. In particular, the differential diagnosis of hematuria (blood in the urine) is discussed in detail. A protocol of a simulated doctor/patient interaction is presented and analyzed to determine the crucial structures and processes involved in the diagnosis procedure. The data structure proposed for representing medical information revolves around elementary hypotheses which are activated when certain disposing of findings, activating hypotheses, evaluating hypotheses locally and combining hypotheses globally is examined for its heuristic implications. The thesis attempts to fit the problem of medical diagnosis into the framework of other Artifcial Intelligence problems and paradigms and in particular explores the notions of pure search vs. heuristic methods, linearity and interaction, local vs. global knowledge and the structure of hypotheses within the world of kidney disease.
Resumo:
The technologies and methodologies of assembly design and evaluation in the early design stage are highly significant to product development. This paper looks at a promising technology to mix real components (e.g. physical prototypes, assembly tools, machines, etc.) with virtual components to create an Augmented Reality (AR) interface for assembly process evaluation. The goal of this paper is to clarify the methodologies and enabling technologies of how to establish an AR assembly simulation and evaluation environment. The architecture of an AR assembly system is proposed and the important functional modules including AR environment set-up, design for assembly (DFA) analysis and AR assembly sequence planning in an AR environment are discussed in detail.