1 resultado para Weighted Distributions
em Massachusetts Institute of Technology
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (3)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (5)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (20)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (5)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (19)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (26)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (138)
- Boston University Digital Common (4)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (6)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (71)
- CentAUR: Central Archive University of Reading - UK (55)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (97)
- Cochin University of Science & Technology (CUSAT), India (23)
- Collection Of Biostatistics Research Archive (6)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (15)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (5)
- Digital Commons - Michigan Tech (3)
- Digital Peer Publishing (2)
- DigitalCommons - The University of Maine Research (5)
- DigitalCommons@The Texas Medical Center (6)
- DigitalCommons@University of Nebraska - Lincoln (4)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Duke University (8)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (15)
- Greenwich Academic Literature Archive - UK (8)
- Helda - Digital Repository of University of Helsinki (15)
- Indian Institute of Science - Bangalore - Índia (50)
- Instituto Politécnico do Porto, Portugal (5)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (37)
- Publishing Network for Geoscientific & Environmental Data (3)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (94)
- Queensland University of Technology - ePrints Archive (77)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (62)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (1)
- Universidade Federal do Pará (1)
- Universitat de Girona, Spain (9)
- Université de Lausanne, Switzerland (5)
- Université de Montréal, Canada (15)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
Chow and Liu introduced an algorithm for fitting a multivariate distribution with a tree (i.e. a density model that assumes that there are only pairwise dependencies between variables) and that the graph of these dependencies is a spanning tree. The original algorithm is quadratic in the dimesion of the domain, and linear in the number of data points that define the target distribution $P$. This paper shows that for sparse, discrete data, fitting a tree distribution can be done in time and memory that is jointly subquadratic in the number of variables and the size of the data set. The new algorithm, called the acCL algorithm, takes advantage of the sparsity of the data to accelerate the computation of pairwise marginals and the sorting of the resulting mutual informations, achieving speed ups of up to 2-3 orders of magnitude in the experiments.