4 resultados para Weighted Corner Sobolev Spaces
em Massachusetts Institute of Technology
Resumo:
In a recent seminal paper, Gibson and Wexler (1993) take important steps to formalizing the notion of language learning in a (finite) space whose grammars are characterized by a finite number of parameters. They introduce the Triggering Learning Algorithm (TLA) and show that even in finite space convergence may be a problem due to local maxima. In this paper we explicitly formalize learning in finite parameter space as a Markov structure whose states are parameter settings. We show that this captures the dynamics of TLA completely and allows us to explicitly compute the rates of convergence for TLA and other variants of TLA e.g. random walk. Also included in the paper are a corrected version of GW's central convergence proof, a list of "problem states" in addition to local maxima, and batch and PAC-style learning bounds for the model.
Resumo:
This paper presents a computation of the $V_gamma$ dimension for regression in bounded subspaces of Reproducing Kernel Hilbert Spaces (RKHS) for the Support Vector Machine (SVM) regression $epsilon$-insensitive loss function, and general $L_p$ loss functions. Finiteness of the RV_gamma$ dimension is shown, which also proves uniform convergence in probability for regression machines in RKHS subspaces that use the $L_epsilon$ or general $L_p$ loss functions. This paper presenta a novel proof of this result also for the case that a bias is added to the functions in the RKHS.
Resumo:
In this paper we consider the problem of approximating a function belonging to some funtion space Φ by a linear comination of n translates of a given function G. Ussing a lemma by Jones (1990) and Barron (1991) we show that it is possible to define function spaces and functions G for which the rate of convergence to zero of the erro is 0(1/n) in any number of dimensions. The apparent avoidance of the "curse of dimensionality" is due to the fact that these function spaces are more and more constrained as the dimension increases. Examples include spaces of the Sobolev tpe, in which the number of weak derivatives is required to be larger than the number of dimensions. We give results both for approximation in the L2 norm and in the Lc norm. The interesting feature of these results is that, thanks to the constructive nature of Jones" and Barron"s lemma, an iterative procedure is defined that can achieve this rate.
Resumo:
A lubrication-flow model for a free film in a corner is presented. The model, written in the hyperbolic coordinate system ξ = x² – y², η = 2xy, applies to films that are thin in the η direction. The lubrication approximation yields two coupled evolution equations for the film thickness and the velocity field which, to lowest order, describes plug flow in the hyperbolic coordinates. A free film in a corner evolving under surface tension and gravity is investigated. The rate of thinning of a free film is compared to that of a film evolving over a solid substrate. Viscous shear and normal stresses are both captured in the model and are computed for the entire flow domain. It is shown that normal stress dominates over shear stress in the far field, while shear stress dominates close to the corner.