4 resultados para Voiced or unvoiced classification

em Massachusetts Institute of Technology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present some extensions to the k-means algorithm for vector quantization that permit its efficient use in image segmentation and pattern classification tasks. It is shown that by introducing state variables that correspond to certain statistics of the dynamic behavior of the algorithm, it is possible to find the representative centers fo the lower dimensional maniforlds that define the boundaries between classes, for clouds of multi-dimensional, mult-class data; this permits one, for example, to find class boundaries directly from sparse data (e.g., in image segmentation tasks) or to efficiently place centers for pattern classification (e.g., with local Gaussian classifiers). The same state variables can be used to define algorithms for determining adaptively the optimal number of centers for clouds of data with space-varying density. Some examples of the applicatin of these extensions are also given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce and explore an approach to estimating statistical significance of classification accuracy, which is particularly useful in scientific applications of machine learning where high dimensionality of the data and the small number of training examples render most standard convergence bounds too loose to yield a meaningful guarantee of the generalization ability of the classifier. Instead, we estimate statistical significance of the observed classification accuracy, or the likelihood of observing such accuracy by chance due to spurious correlations of the high-dimensional data patterns with the class labels in the given training set. We adopt permutation testing, a non-parametric technique previously developed in classical statistics for hypothesis testing in the generative setting (i.e., comparing two probability distributions). We demonstrate the method on real examples from neuroimaging studies and DNA microarray analysis and suggest a theoretical analysis of the procedure that relates the asymptotic behavior of the test to the existing convergence bounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of terms such as “Engineering Systems”, “System of systems” and others have been coming into greater use over the past decade to denote systems of importance but with implied higher complexity than for the term systems alone. This paper searches for a useful taxonomy or classification scheme for complex Systems. There are two aspects to this problem: 1) distinguishing between Engineering Systems (the term we use) and other Systems, and 2) differentiating among Engineering Systems. Engineering Systems are found to be differentiated from other complex systems by being human-designed and having both significant human complexity as well as significant technical complexity. As far as differentiating among various engineering systems, it is suggested that functional type is the most useful attribute for classification differentiation. Information, energy, value and mass acted upon by various processes are the foundation concepts underlying the technical types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stimuli outside classical receptive fields significantly influence the neurons' activities in primary visual cortex. We propose that such contextual influences are used to segment regions by detecting the breakdown of homogeneity or translation invariance in the input, thus computing global region boundaries using local interactions. This is implemented in a biologically based model of V1, and demonstrated in examples of texture segmentation and figure-ground segregation. By contrast with traditional approaches, segmentation occurs without classification or comparison of features within or between regions and is performed by exactly the same neural circuit responsible for the dual problem of the grouping and enhancement of contours.