2 resultados para Visco-elastic fluid
em Massachusetts Institute of Technology
Resumo:
We consider the dynamics of an elastic sheet lubricated by the flow of a thin layer of fluid that separates it from a rigid wall. By considering long wavelength deformations of the sheet, we derive an evolution equation for its motion, accounting for the effects of elastic bending, viscous lubrication and body forces. We then analyze various steady and unsteady problems for the sheet such as peeling, healing, levitating and bursting using a combination of numerical simulation and dimensional analysis. On the macro-scale, we corroborate our theory with a simple experiment, and on the micro-scale, we analyze an oscillatory valve that can transform a continuous stream of fluid into a series of discrete pulses.
The Inertio-Elastic Planar Entry Flow of Low-Viscosity Elastic Fluids in Micro-fabricated Geometries
Resumo:
The non-Newtonian flow of dilute aqueous polyethylene oxide (PEO) solutions through microfabricated planar abrupt contraction-expansions is investigated. The contraction geometries are fabricated from a high-resolution chrome mask and cross-linked PDMS gels using the tools of soft-lithography. The small length scales and high deformation rates in the contraction throat lead to significant extensional flow effects even with dilute polymer solutions having time constants on the order of milliseconds. The dimensionless extra pressure drop across the contraction increases by more than 200% and is accompanied by significant upstream vortex growth. Streak photography and videomicroscopy using epifluorescent particles shows that the flow ultimately becomes unstable and three-dimensional. The moderate Reynolds numbers (0.03 ⤠Re ⤠44) associated with these high Deborah number (0 ⤠De ⤠600) microfluidic flows results in the exploration of new regions of the Re-De parameter space in which the effects of both elasticity and inertia can be observed. Understanding such interactions will be increasingly important in microfluidic applications involving complex fluids and can best be interpreted in terms of the elasticity number, El = De/Re, which is independent of the flow kinematics and depends only on the fluid rheology and the characteristic size of the device.