1 resultado para Vegetal extraction
em Massachusetts Institute of Technology
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Applied Math and Science Education Repository - Washington - USA (1)
- Aquatic Commons (12)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (8)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (2)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (21)
- Biblioteca Digital de Artesanías de Colombia (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (5)
- Boston University Digital Common (4)
- Brock University, Canada (5)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (51)
- CentAUR: Central Archive University of Reading - UK (69)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (183)
- Cochin University of Science & Technology (CUSAT), India (16)
- Dalarna University College Electronic Archive (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (10)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (3)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (11)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (3)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (17)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (11)
- Indian Institute of Science - Bangalore - Índia (50)
- Infoteca EMBRAPA (13)
- Instituto Politécnico de Santarém (1)
- Instituto Politécnico do Porto, Portugal (15)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (6)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (11)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (104)
- Queensland University of Technology - ePrints Archive (76)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
- Repositório Científico do Instituto Politécnico de Santarém - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (5)
- Repositório Institucional da Universidade de Aveiro - Portugal (10)
- Repositorio Institucional de la Universidad Nacional Agraria (7)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (79)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (6)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad Autónoma de Nuevo León, Mexico (8)
- Universidad Politécnica Salesiana Ecuador (1)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (23)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (15)
Resumo:
Information representation is a critical issue in machine vision. The representation strategy in the primitive stages of a vision system has enormous implications for the performance in subsequent stages. Existing feature extraction paradigms, like edge detection, provide sparse and unreliable representations of the image information. In this thesis, we propose a novel feature extraction paradigm. The features consist of salient, simple parts of regions bounded by zero-crossings. The features are dense, stable, and robust. The primary advantage of the features is that they have abstract geometric attributes pertaining to their size and shape. To demonstrate the utility of the feature extraction paradigm, we apply it to passive navigation. We argue that the paradigm is applicable to other early vision problems.