5 resultados para Vapor deposition

em Massachusetts Institute of Technology


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vertically aligned carbon nanotubes have been grown using Ni as catalyst by plasma enhanced chemical vapor deposition system (PECVD) in various pre-patterned substrates. Ni was thermally evaporated on silicon substrates with anodized alumina mask prepared in different methods including 2 step anodization of porous alumina template and interference lithography assisted array of pores. The templates helped to define Ni nanodots inside the pores which in turn catalyzed the growth of carbon nanotubes inside the PECVD system at temperature of 700-750C using mixture of ammonia and acetylene gases. The resulting well-aligned multi-walled carbon nanotubes were further investigated using SEM, TEM and Raman spectroscopy. The size, shape and structure of the grown carbon nanotubes were also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The periodic silane burst technique was employed during metalorganic chemical vapor deposition of epitaxial GaN on AlN buffer layers grown on Si (111). Periodic silicon delta doping during growth of both the AlN and GaN layers led to growth of GaN films with decreased tensile stresses and decreased threading dislocation densities, as well as films with improved quality as indicated by x-ray diffraction, micro-Raman spectroscopy, atomic force microscopy, and transmission electron microscopy. The possible mechanism of the reduction of tensile stress and the dislocation density is discussed in the paper.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High density, uniform GaN nanodot arrays with controllable size have been synthesized by using template-assisted selective growth. The GaN nanodots with average diameter 40nm, 80nm and 120nm were selectively grown by metalorganic chemical vapor deposition (MOCVD) on a nano-patterned SiO2/GaN template. The nanoporous SiO2 on GaN surface was created by inductively coupled plasma etching (ICP) using anodic aluminum oxide (AAO) template as a mask. This selective regrowth results in highly crystalline GaN nanodots confirmed by high resolution transmission electron microscopy. The narrow size distribution and uniform spatial position of the nanoscale dots offer potential advantages over self-assembled dots grown by the Stranski–Krastanow mode.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The InGaN system provides the opportunity to fabricate light emitting devices over the whole visible and ultraviolet spectrum due to band-gap energies E[subscript g] varying between 3.42 eV for GaN and 1.89 eV for InN. However, high In content in InGaN layers will result in a significant degradation of the crystalline quality of the epitaxial layers. In addition, unlike other III-V compound semiconductors, the ratio of gallium to indium incorporated in InGaN is in general not a simple function of the metal atomic flux ratio, f[subscript Ga]/f[subscript In]. Instead, In incorporation is complicated by the tendency of gallium to incorporate preferentially and excess In to form metallic droplets on the growth surface. This phenomenon can definitely affect the In distribution in the InGaN system. Scanning electron microscopy, room temperature photoluminescence, and X-ray diffraction techniques have been used to characterize InGaN layer grown on InN and InGaN buffers. The growth was done on c-plane sapphire by MOCVD. Results showed that green emission was obtained which indicates a relatively high In incorporation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Scaling down of the CMOS technology requires thinner gate dielectric to maintain high performance. However, due to the depletion of poly-Si gate, it is difficult to reduce the gate thickness further especially for sub-65 nm CMOS generation. Fully silicidation metal gate (FUSI) is one of the most promising solutions. Furthermore, FUSI metal gate reduces gate-line sheet resistance, prevents boron penetration to channels, and has good process compatibility with high-k gate dielectric. Poly-SiGe gate technology is another solution because of its enhancement of boron activation and compatibility with the conventional CMOS process. Combination of these two technologies for the formation of fully germanosilicided metal gate makes the approach very attractive. In this paper, the deposition of undoped Poly-Si₁₋xGex (0 < x < 30% ) films onto SiO₂ in a low pressure chemical vapor deposition (LPCVD) system is described. Detailed growth conditions and the characterization of the grown films are presented.