1 resultado para VISUALLY IMPAIRED
em Massachusetts Institute of Technology
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (5)
- Abertay Research Collections - Abertay University’s repository (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Applied Math and Science Education Repository - Washington - USA (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (1)
- Aston University Research Archive (30)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (9)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (94)
- Boston University Digital Common (3)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Cambridge University Engineering Department Publications Database (38)
- CentAUR: Central Archive University of Reading - UK (46)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (3)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (3)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (1)
- Duke University (7)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (9)
- Indian Institute of Science - Bangalore - Índia (3)
- Instituto Politécnico de Viseu (2)
- Instituto Politécnico do Porto, Portugal (1)
- Línguas & Letras - Unoeste (1)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (9)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (37)
- Nottingham eTheses (2)
- Publishing Network for Geoscientific & Environmental Data (5)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (64)
- Queensland University of Technology - ePrints Archive (152)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (47)
- Research Open Access Repository of the University of East London. (1)
- RIBERDIS - Repositorio IBERoamericano sobre DIScapacidad - Centro Español de Documentación sobre Discapacidad (CEDD) (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (108)
- Scielo España (1)
- Scientific Open-access Literature Archive and Repository (1)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (5)
- Universidade Complutense de Madrid (1)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (15)
- Universidade Metodista de São Paulo (3)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (5)
- Université de Montréal (2)
- Université de Montréal, Canada (9)
- Université Laval Mémoires et thèses électroniques (1)
- University of Innsbruck Digital Library - Austria (1)
- University of Michigan (26)
- University of Queensland eSpace - Australia (26)
- University of Southampton, United Kingdom (2)
Resumo:
We present a model for recovering the direction of heading of an observer who is moving relative to a scene that may contain self-moving objects. The model builds upon an algorithm proposed by Rieger and Lawton (1985), which is based on earlier work by Longuet-Higgens and Prazdny (1981). The algorithm uses velocity differences computed in regions of high depth variation to estimate the location of the focus of expansion, which indicates the observer's heading direction. We relate the behavior of the proposed model to psychophysical observations regarding the ability of human observers to judge their heading direction, and show how the model can cope with self-moving objects in the environment. We also discuss this model in the broader context of a navigational system that performs tasks requiring rapid sensing and response through the interaction of simple task-specific routines.