1 resultado para Unitary similarity
em Massachusetts Institute of Technology
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Aquatic Commons (1)
- Archive of European Integration (5)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (8)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (15)
- Boston University Digital Common (6)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (13)
- CentAUR: Central Archive University of Reading - UK (20)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (18)
- Cochin University of Science & Technology (CUSAT), India (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- CUNY Academic Works (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (1)
- Digital Peer Publishing (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (37)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (49)
- Indian Institute of Science - Bangalore - Índia (294)
- Instituto Politécnico do Porto, Portugal (4)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (13)
- Nottingham eTheses (5)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (6)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (31)
- Queensland University of Technology - ePrints Archive (265)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (22)
- Repositorio Institucional Universidad de Medellín (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (1)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (2)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (9)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Algarve (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (10)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (1)
- Université de Montréal, Canada (3)
- University of Michigan (4)
- University of Queensland eSpace - Australia (14)
- University of Southampton, United Kingdom (1)
Resumo:
The image comparison operation ??sessing how well one image matches another ??rms a critical component of many image analysis systems and models of human visual processing. Two norms used commonly for this purpose are L1 and L2, which are specific instances of the Minkowski metric. However, there is often not a principled reason for selecting one norm over the other. One way to address this problem is by examining whether one metric better captures the perceptual notion of image similarity than the other. With this goal, we examined perceptual preferences for images retrieved on the basis of the L1 versus the L2 norm. These images were either small fragments without recognizable content, or larger patterns with recognizable content created via vector quantization. In both conditions the subjects showed a consistent preference for images matched using the L1 metric. These results suggest that, in the domain of natural images of the kind we have used, the L1 metric may better capture human notions of image similarity.