6 resultados para Uniform Gâteaux Smooth Norms

em Massachusetts Institute of Technology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

\0\05{\0\0\0\0\0\0\0\0 a uniform wall illuminated by a spot light often gives a strong impression of the illuminant color. How can it be possible to know if it is a white wall illuminated by yellow light or a yellow wall illuminated by white light? If the wall is a Lambertian reflector, it would not be possible to tell the difference. However, in the real world, some amount of specular reflection is almost always present. In this memo, it is shown that the computation is possible in most practical cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recognition of objects with smooth bounding surfaces from their contour images is considerably more complicated than that of objects with sharp edges, since in the former case the set of object points that generates the silhouette contours changes from one view to another. The "curvature method", developed by Basri and Ullman [1988], provides a method to approximate the appearance of such objects from different viewpoints. In this paper we analyze the curvature method. We apply the method to ellipsoidal objects and compute analytically the error obtained for different rotations of the objects. The error depends on the exact shape of the ellipsoid (namely, the relative lengths of its axes), and it increases a sthe ellipsoid becomes "deep" (elongated in the Z-direction). We show that the errors are usually small, and that, in general, a small number of models is required to predict the appearance of an ellipsoid from all possible views. Finally, we show experimentally that the curvature method applies as well to objects with hyperbolic surface patches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method will be described for finding the shape of a smooth apaque object form a monocular image, given a knowledge of the surface photometry, the position of the lightsource and certain auxiliary information to resolve ambiguities. This method is complementary to the use of stereoscopy which relies on matching up sharp detail and will fail on smooth objects. Until now the image processing of single views has been restricted to objects which can meaningfully be considered two-dimensional or bounded by plane surfaces. It is possible to derive a first-order non-linear partial differential equation in two unknowns relating the intensity at the image points to the shape of the objects. This equation can be solved by means of an equivalent set of five ordinary differential equations. A curve traced out by solving this set of equations for one set of starting values is called a characteristic strip. Starting one of these strips from each point on some initial curve will produce the whole solution surface. The initial curves can usually be constructed around so-called singular points. A number of applications of this metod will be discussed including one to lunar topography and one to the scanning electron microscope. In both of these cases great simplifications occur in the equations. A note on polyhedra follows and a quantitative theory of facial make-up is touched upon. An implementation of some of these ideas on the PDP-6 computer with its attached image-dissector camera at the Artificial intelligence Laboratory will be described, and also a nose-recognition program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The furious pace of Moore's Law is driving computer architecture into a realm where the the speed of light is the dominant factor in system latencies. The number of clock cycles to span a chip are increasing, while the number of bits that can be accessed within a clock cycle is decreasing. Hence, it is becoming more difficult to hide latency. One alternative solution is to reduce latency by migrating threads and data, but the overhead of existing implementations has previously made migration an unserviceable solution so far. I present an architecture, implementation, and mechanisms that reduces the overhead of migration to the point where migration is a viable supplement to other latency hiding mechanisms, such as multithreading. The architecture is abstract, and presents programmers with a simple, uniform fine-grained multithreaded parallel programming model with implicit memory management. In other words, the spatial nature and implementation details (such as the number of processors) of a parallel machine are entirely hidden from the programmer. Compiler writers are encouraged to devise programming languages for the machine that guide a programmer to express their ideas in terms of objects, since objects exhibit an inherent physical locality of data and code. The machine implementation can then leverage this locality to automatically distribute data and threads across the physical machine by using a set of high performance migration mechanisms. An implementation of this architecture could migrate a null thread in 66 cycles -- over a factor of 1000 improvement over previous work. Performance also scales well; the time required to move a typical thread is only 4 to 5 times that of a null thread. Data migration performance is similar, and scales linearly with data block size. Since the performance of the migration mechanism is on par with that of an L2 cache, the implementation simulated in my work has no data caches and relies instead on multithreading and the migration mechanism to hide and reduce access latencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop efficient techniques for the non-rigid registration of medical images by using representations that adapt to the anatomy found in such images. Images of anatomical structures typically have uniform intensity interiors and smooth boundaries. We create methods to represent such regions compactly using tetrahedra. Unlike voxel-based representations, tetrahedra can accurately describe the expected smooth surfaces of medical objects. Furthermore, the interior of such objects can be represented using a small number of tetrahedra. Rather than describing a medical object using tens of thousands of voxels, our representations generally contain only a few thousand elements. Tetrahedra facilitate the creation of efficient non-rigid registration algorithms based on finite element methods (FEM). We create a fast, FEM-based method to non-rigidly register segmented anatomical structures from two subjects. Using our compact tetrahedral representations, this method generally requires less than one minute of processing time on a desktop PC. We also create a novel method for the non-rigid registration of gray scale images. To facilitate a fast method, we create a tetrahedral representation of a displacement field that automatically adapts to both the anatomy in an image and to the displacement field. The resulting algorithm has a computational cost that is dominated by the number of nodes in the mesh (about 10,000), rather than the number of voxels in an image (nearly 10,000,000). For many non-rigid registration problems, we can find a transformation from one image to another in five minutes. This speed is important as it allows use of the algorithm during surgery. We apply our algorithms to find correlations between the shape of anatomical structures and the presence of schizophrenia. We show that a study based on our representations outperforms studies based on other representations. We also use the results of our non-rigid registration algorithm as the basis of a segmentation algorithm. That algorithm also outperforms other methods in our tests, producing smoother segmentations and more accurately reproducing manual segmentations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to estimate the motion of an object, the visual system needs to combine multiple local measurements, each of which carries some degree of ambiguity. We present a model of motion perception whereby measurements from different image regions are combined according to a Bayesian estimator --- the estimated motion maximizes the posterior probability assuming a prior favoring slow and smooth velocities. In reviewing a large number of previously published phenomena we find that the Bayesian estimator predicts a wide range of psychophysical results. This suggests that the seemingly complex set of illusions arise from a single computational strategy that is optimal under reasonable assumptions.