1 resultado para Underwater Acoustic Sensor Networks
em Massachusetts Institute of Technology
Filtro por publicador
- Repository Napier (2)
- Aberdeen University (3)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- AMS Campus - Alm@DL - Università di Bologna (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (21)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- Aston University Research Archive (55)
- Biblioteca de Teses e Dissertações da USP (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (9)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (70)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CentAUR: Central Archive University of Reading - UK (29)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Cochin University of Science & Technology (CUSAT), India (27)
- Coffee Science - Universidade Federal de Lavras (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (23)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (6)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (5)
- Digital Commons - Montana Tech (1)
- Digital Commons at Florida International University (20)
- DigitalCommons@University of Nebraska - Lincoln (8)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (7)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (4)
- Düsseldorfer Dokumenten- und Publikationsservice (1)
- Galway Mayo Institute of Technology, Ireland (2)
- Glasgow Theses Service (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Instituto Politécnico do Porto, Portugal (99)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (2)
- Publishing Network for Geoscientific & Environmental Data (161)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (7)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (3)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (43)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (12)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo Saúde Pública - SP (5)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (93)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (8)
- Universidade Federal do Pará (6)
- Universidade Federal do Rio Grande do Norte (UFRN) (9)
- Universita di Parma (2)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (4)
- Université de Montréal, Canada (1)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (1)
- University of Michigan (1)
- University of Queensland eSpace - Australia (5)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
This thesis develops an approach to the construction of multidimensional stochastic models for intelligent systems exploring an underwater environment. It describes methods for building models by a three- dimensional spatial decomposition of stochastic, multisensor feature vectors. New sensor information is incrementally incorporated into the model by stochastic backprojection. Error and ambiguity are explicitly accounted for by blurring a spatial projection of remote sensor data before incorporation. The stochastic models can be used to derive surface maps or other representations of the environment. The methods are demonstrated on data sets from multibeam bathymetric surveying, towed sidescan bathymetry, towed sidescan acoustic imagery, and high-resolution scanning sonar aboard a remotely operated vehicle.