14 resultados para Trusted Computing
em Massachusetts Institute of Technology
Resumo:
Combining numerical techniques with ideas from symbolic computation and with methods incorporating knowledge of science and mathematics leads to a new category of intelligent computational tools for scientists and engineers. These tools autonomously prepare simulation experiments from high-level specifications of physical models. For computationally intensive experiments, they automatically design special-purpose numerical engines optimized to perform the necessary computations. They actively monitor numerical and physical experiments. They interpret experimental data and formulate numerical results in qualitative terms. They enable their human users to control computational experiments in terms of high-level behavioral descriptions.
Resumo:
The future of the software industry is today being shaped in the courtroom. Most discussions of intellectual property to date, however, have been frames as debates about how the existing law --- promulgated long before the computer revolution --- should be applied to software. This memo is a transcript of a panel discussion on what forms of legal protection should apply to software to best serve both the industry and society in general. After addressing that question we can consider what laws would bring this about.
Resumo:
We describe the key role played by partial evaluation in the Supercomputer Toolkit, a parallel computing system for scientific applications that effectively exploits the vast amount of parallelism exposed by partial evaluation. The Supercomputer Toolkit parallel processor and its associated partial evaluation-based compiler have been used extensively by scientists at M.I.T., and have made possible recent results in astrophysics showing that the motion of the planets in our solar system is chaotically unstable.
Resumo:
We present techniques for computing upper and lower bounds on the likelihoods of partial instantiations of variables in sigmoid and noisy-OR networks. The bounds determine confidence intervals for the desired likelihoods and become useful when the size of the network (or clique size) precludes exact computations. We illustrate the tightness of the obtained bounds by numerical experiments.
Resumo:
Type-omega DPLs (Denotational Proof Languages) are languages for proof presentation and search that offer strong soundness guarantees. LCF-type systems such as HOL offer similar guarantees, but their soundness relies heavily on static type systems. By contrast, DPLs ensure soundness dynamically, through their evaluation semantics; no type system is necessary. This is possible owing to a novel two-tier syntax that separates deductions from computations, and to the abstraction of assumption bases, which is factored into the semantics of the language and allows for sound evaluation. Every type-omega DPL properly contains a type-alpha DPL, which can be used to present proofs in a lucid and detailed form, exclusively in terms of primitive inference rules. Derived inference rules are expressed as user-defined methods, which are "proof recipes" that take arguments and dynamically perform appropriate deductions. Methods arise naturally via parametric abstraction over type-alpha proofs. In that light, the evaluation of a method call can be viewed as a computation that carries out a type-alpha deduction. The type-alpha proof "unwound" by such a method call is called the "certificate" of the call. Certificates can be checked by exceptionally simple type-alpha interpreters, and thus they are useful whenever we wish to minimize our trusted base. Methods are statically closed over lexical environments, but dynamically scoped over assumption bases. They can take other methods as arguments, they can iterate, and they can branch conditionally. These capabilities, in tandem with the bifurcated syntax of type-omega DPLs and their dynamic assumption-base semantics, allow the user to define methods in a style that is disciplined enough to ensure soundness yet fluid enough to permit succinct and perspicuous expression of arbitrarily sophisticated derived inference rules. We demonstrate every major feature of type-omega DPLs by defining and studying NDL-omega, a higher-order, lexically scoped, call-by-value type-omega DPL for classical zero-order natural deduction---a simple choice that allows us to focus on type-omega syntax and semantics rather than on the subtleties of the underlying logic. We start by illustrating how type-alpha DPLs naturally lead to type-omega DPLs by way of abstraction; present the formal syntax and semantics of NDL-omega; prove several results about it, including soundness; give numerous examples of methods; point out connections to the lambda-phi calculus, a very general framework for type-omega DPLs; introduce a notion of computational and deductive cost; define several instrumented interpreters for computing such costs and for generating certificates; explore the use of type-omega DPLs as general programming languages; show that DPLs do not have to be type-less by formulating a static Hindley-Milner polymorphic type system for NDL-omega; discuss some idiosyncrasies of type-omega DPLs such as the potential divergence of proof checking; and compare type-omega DPLs to other approaches to proof presentation and discovery. Finally, a complete implementation of NDL-omega in SML-NJ is given for users who want to run the examples and experiment with the language.
Resumo:
Location is a primary cue in many context-aware computing systems, and is often represented as a global coordinate, room number, or Euclidean distance various landmarks. A user?s concept of location, however, is often defined in terms of regions in which common activities occur. We show how to partition a space into such regions based on patterns of observed user location and motion. These regions, which we call activity zones, represent regions of similar user activity, and can be used to trigger application actions, retrieve information based on previous context, and present information to users. We suggest that context-aware applications can benefit from a location representation learned from observing users. We describe an implementation of our system and present two example applications whose behavior is controlled by users? entry, exit, and presence in the zones.
Resumo:
The dream of pervasive computing is slowly becoming a reality. A number of projects around the world are constantly contributing ideas and solutions that are bound to change the way we interact with our environments and with one another. An essential component of the future is a software infrastructure that is capable of supporting interactions on scales ranging from a single physical space to intercontinental collaborations. Such infrastructure must help applications adapt to very diverse environments and must protect people's privacy and respect their personal preferences. In this paper we indicate a number of limitations present in the software infrastructures proposed so far (including our previous work). We then describe the framework for building an infrastructure that satisfies the abovementioned criteria. This framework hinges on the concepts of delegation, arbitration and high-level service discovery. Components of our own implementation of such an infrastructure are presented.
Resumo:
This thesis examines a complete design framework for a real-time, autonomous system with specialized VLSI hardware for computing 3-D camera motion. In the proposed architecture, the first step is to determine point correspondences between two images. Two processors, a CCD array edge detector and a mixed analog/digital binary block correlator, are proposed for this task. The report is divided into three parts. Part I covers the algorithmic analysis; part II describes the design and test of a 32$\time $32 CCD edge detector fabricated through MOSIS; and part III compares the design of the mixed analog/digital correlator to a fully digital implementation.
Resumo:
Studying chaotic behavior in nonlinear systems requires numerous computations in order to simulate the behavior of such systems. The Standard Map Machine was designed and implemented as a special computer for performing these intensive computations with high-speed and high-precision. Its impressive performance is due to its simple architecture specialized to the numerical computations required of nonlinear systems. This report discusses the design and implementation of the Standard Map Machine and its use in the study of nonlinear mappings; in particular, the study of the standard map.
Resumo:
The dynamic power requirement of CMOS circuits is rapidly becoming a major concern in the design of personal information systems and large computers. In this work we present a number of new CMOS logic families, Charge Recovery Logic (CRL) as well as the much improved Split-Level Charge Recovery Logic (SCRL), within which the transfer of charge between the nodes occurs quasistatically. Operating quasistatically, these logic families have an energy dissipation that drops linearly with operating frequency, i.e., their power consumption drops quadratically with operating frequency as opposed to the linear drop of conventional CMOS. The circuit techniques in these new families rely on constructing an explicitly reversible pipelined logic gate, where the information necessary to recover the energy used to compute a value is provided by computing its logical inverse. Information necessary to uncompute the inverse is available from the subsequent inverse logic stage. We demonstrate the low energy operation of SCRL by presenting the results from the testing of the first fully quasistatic 8 x 8 multiplier chip (SCRL-1) employing SCRL circuit techniques.
Resumo:
General-purpose computing devices allow us to (1) customize computation after fabrication and (2) conserve area by reusing expensive active circuitry for different functions in time. We define RP-space, a restricted domain of the general-purpose architectural space focussed on reconfigurable computing architectures. Two dominant features differentiate reconfigurable from special-purpose architectures and account for most of the area overhead associated with RP devices: (1) instructions which tell the device how to behave, and (2) flexible interconnect which supports task dependent dataflow between operations. We can characterize RP-space by the allocation and structure of these resources and compare the efficiencies of architectural points across broad application characteristics. Conventional FPGAs fall at one extreme end of this space and their efficiency ranges over two orders of magnitude across the space of application characteristics. Understanding RP-space and its consequences allows us to pick the best architecture for a task and to search for more robust design points in the space. Our DPGA, a fine- grained computing device which adds small, on-chip instruction memories to FPGAs is one such design point. For typical logic applications and finite- state machines, a DPGA can implement tasks in one-third the area of a traditional FPGA. TSFPGA, a variant of the DPGA which focuses on heavily time-switched interconnect, achieves circuit densities close to the DPGA, while reducing typical physical mapping times from hours to seconds. Rigid, fabrication-time organization of instruction resources significantly narrows the range of efficiency for conventional architectures. To avoid this performance brittleness, we developed MATRIX, the first architecture to defer the binding of instruction resources until run-time, allowing the application to organize resources according to its needs. Our focus MATRIX design point is based on an array of 8-bit ALU and register-file building blocks interconnected via a byte-wide network. With today's silicon, a single chip MATRIX array can deliver over 10 Gop/s (8-bit ops). On sample image processing tasks, we show that MATRIX yields 10-20x the computational density of conventional processors. Understanding the cost structure of RP-space helps us identify these intermediate architectural points and may provide useful insight more broadly in guiding our continual search for robust and efficient general-purpose computing structures.
Resumo:
Traditionally, we've focussed on the question of how to make a system easy to code the first time, or perhaps on how to ease the system's continued evolution. But if we look at life cycle costs, then we must conclude that the important question is how to make a system easy to operate. To do this we need to make it easy for the operators to see what's going on and to then manipulate the system so that it does what it is supposed to. This is a radically different criterion for success. What makes a computer system visible and controllable? This is a difficult question, but it's clear that today's modern operating systems with nearly 50 million source lines of code are neither. Strikingly, the MIT Lisp Machine and its commercial successors provided almost the same functionality as today's mainstream sytsems, but with only 1 Million lines of code. This paper is a retrospective examination of the features of the Lisp Machine hardware and software system. Our key claim is that by building the Object Abstraction into the lowest tiers of the system, great synergy and clarity were obtained. It is our hope that this is a lesson that can impact tomorrow's designs. We also speculate on how the spirit of the Lisp Machine could be extended to include a comprehensive access control model and how new layers of abstraction could further enrich this model.
Resumo:
We present a low cost and easily deployed infrastructure for location aware computing that is built using standard Bluetooth® technologies and personal computers. Mobile devices are able to determine their location to room-level granularity with existing bluetooth technology, and to even greater resolution with the use of the recently adopted bluetooth 1.2 specification, all while maintaining complete anonymity. Various techniques for improving the speed and resolution of the system are described, along with their tradeoffs in privacy. The system is trivial to implement on a large scale – our network covering 5,000 square meters was deployed by a single student over the course of a few days at a cost of less than US$1,000.
Resumo:
Memory errors are a common cause of incorrect software execution and security vulnerabilities. We have developed two new techniques that help software continue to execute successfully through memory errors: failure-oblivious computing and boundless memory blocks. The foundation of both techniques is a compiler that generates code that checks accesses via pointers to detect out of bounds accesses. Instead of terminating or throwing an exception, the generated code takes another action that keeps the program executing without memory corruption. Failure-oblivious code simply discards invalid writes and manufactures values to return for invalid reads, enabling the program to continue its normal execution path. Code that implements boundless memory blocks stores invalid writes away in a hash table to return as the values for corresponding out of bounds reads. he net effect is to (conceptually) give each allocated memory block unbounded size and to eliminate out of bounds accesses as a programming error. We have implemented both techniques and acquired several widely used open source servers (Apache, Sendmail, Pine, Mutt, and Midnight Commander).With standard compilers, all of these servers are vulnerable to buffer overflow attacks as documented at security tracking web sites. Both failure-oblivious computing and boundless memory blocks eliminate these security vulnerabilities (as well as other memory errors). Our results show that our compiler enables the servers to execute successfully through buffer overflow attacks to continue to correctly service user requests without security vulnerabilities.