2 resultados para Transformations (Mathematics)
em Massachusetts Institute of Technology
Resumo:
Ontic is an interactive system for developing and verifying mathematics. Ontic's verification mechanism is capable of automatically finding and applying information from a library containing hundreds of mathematical facts. Starting with only the axioms of Zermelo-Fraenkel set theory, the Ontic system has been used to build a data base of definitions and lemmas leading to a proof of the Stone representation theorem for Boolean lattices. The Ontic system has been used to explore issues in knowledge representation, automated deduction, and the automatic use of large data bases.
Resumo:
Human object recognition is generally considered to tolerate changes of the stimulus position in the visual field. A number of recent studies, however, have cast doubt on the completeness of translation invariance. In a new series of experiments we tried to investigate whether positional specificity of short-term memory is a general property of visual perception. We tested same/different discrimination of computer graphics models that were displayed at the same or at different locations of the visual field, and found complete translation invariance, regardless of the similarity of the animals and irrespective of direction and size of the displacement (Exp. 1 and 2). Decisions were strongly biased towards same decisions if stimuli appeared at a constant location, while after translation subjects displayed a tendency towards different decisions. Even if the spatial order of animal limbs was randomized ("scrambled animals"), no deteriorating effect of shifts in the field of view could be detected (Exp. 3). However, if the influence of single features was reduced (Exp. 4 and 5) small but significant effects of translation could be obtained. Under conditions that do not reveal an influence of translation, rotation in depth strongly interferes with recognition (Exp. 6). Changes of stimulus size did not reduce performance (Exp. 7). Tolerance to these object transformations seems to rely on different brain mechanisms, with translation and scale invariance being achieved in principle, while rotation invariance is not.