7 resultados para Trajectory
em Massachusetts Institute of Technology
Resumo:
Trajectory Mapping "TM'' is a new scaling technique designed to recover the parameterizations, axes, and paths used to traverse a feature space. Unlike Multidimensional Scaling (MDS), there is no assumption that the space is homogenous or metric. Although some metric ordering information is obtained with TM, the main output is the feature parameterizations that partition the given domain of object samples into different categories. Following an introductory example, the technique is further illustrated using first a set of colors and then a collection of textures taken from Brodatz (1966).
Resumo:
Using the MIT Serial Link Direct Drive Arm as the main experimental device, various issues in trajectory and force control of manipulators were studied in this thesis. Since accurate modeling is important for any controller, issues of estimating the dynamic model of a manipulator and its load were addressed first. Practical and effective algorithms were developed fro the Newton-Euler equations to estimate the inertial parameters of manipulator rigid-body loads and links. Load estimation was implemented both on PUMA 600 robot and on the MIT Serial Link Direct Drive Arm. With the link estimation algorithm, the inertial parameters of the direct drive arm were obtained. For both load and link estimation results, the estimated parameters are good models of the actual system for control purposes since torques and forces can be predicted accurately from these estimated parameters. The estimated model of the direct drive arm was them used to evaluate trajectory following performance by feedforward and computed torque control algorithms. The experimental evaluations showed that the dynamic compensation can greatly improve trajectory following accuracy. Various stability issues of force control were studied next. It was determined that there are two types of instability in force control. Dynamic instability, present in all of the previous force control algorithms discussed in this thesis, is caused by the interaction of a manipulator with a stiff environment. Kinematics instability is present only in the hybrid control algorithm of Raibert and Craig, and is caused by the interaction of the inertia matrix with the Jacobian inverse coordinate transformation in the feedback path. Several methods were suggested and demonstrated experimentally to solve these stability problems. The result of the stability analyses were then incorporated in implementing a stable force/position controller on the direct drive arm by the modified resolved acceleration method using both joint torque and wrist force sensor feedbacks.
Resumo:
A Whole-Arm Manipulator uses every surface to both sense and interact with the environment. To facilitate the analysis and control of a Whole-Arm Manipulator, line geometry is used to describe the location and trajectory of the links. Applications of line kinematics are described and implemented on the MIT Whole-Arm Manipulator (WAM-1).
Resumo:
The goal of this work is to navigate through an office environmentsusing only visual information gathered from four cameras placed onboard a mobile robot. The method is insensitive to physical changes within the room it is inspecting, such as moving objects. Forward and rotational motion vision are used to find doors and rooms, and these can be used to build topological maps. The map is built without the use of odometry or trajectory integration. The long term goal of the project described here is for the robot to build simple maps of its environment and to localize itself within this framework.
Resumo:
The goal of this thesis is to apply the computational approach to motor learning, i.e., describe the constraints that enable performance improvement with experience and also the constraints that must be satisfied by a motor learning system, describe what is being computed in order to achieve learning, and why it is being computed. The particular tasks used to assess motor learning are loaded and unloaded free arm movement, and the thesis includes work on rigid body load estimation, arm model estimation, optimal filtering for model parameter estimation, and trajectory learning from practice. Learning algorithms have been developed and implemented in the context of robot arm control. The thesis demonstrates some of the roles of knowledge in learning. Powerful generalizations can be made on the basis of knowledge of system structure, as is demonstrated in the load and arm model estimation algorithms. Improving the performance of parameter estimation algorithms used in learning involves knowledge of the measurement noise characteristics, as is shown in the derivation of optimal filters. Using trajectory errors to correct commands requires knowledge of how command errors are transformed into performance errors, i.e., an accurate model of the dynamics of the controlled system, as is demonstrated in the trajectory learning work. The performance demonstrated by the algorithms developed in this thesis should be compared with algorithms that use less knowledge, such as table based schemes to learn arm dynamics, previous single trajectory learning algorithms, and much of traditional adaptive control.
Resumo:
Compliant motion occurs when the manipulator position is constrained by the task geometry. Compliant motion may be produced either by a passive mechanical compliance built in to the manipulator, or by an active compliance implemented in the control servo loop. The second method, called force control, is the subject of this report. In particular, this report presents a theory of force control based on formal models of the manipulator, and the task geometry. The ideal effector is used to model the manipulator, and the task geometry is modeled by the ideal surface, which is the locus of all positions accessible to the ideal effector. Models are also defined for the goal trajectory, position control, and force control.
Resumo:
This paper addresses the problem of efficiently computing the motor torques required to drive a lower-pair kinematic chain (e.g., a typical manipulator arm in free motion, or a mechanical leg in the swing phase) given the desired trajectory; i.e., the Inverse Dynamics problem. It investigates the high degree of parallelism inherent in the computations, and presents two "mathematically exact" formulations especially suited to high-speed, highly parallel implementations using special-purpose hardware or VLSI devices. In principle, the formulations should permit the calculations to run at a speed bounded only by I/O. The first presented is a parallel version of the recent linear Newton-Euler recursive algorithm. The time cost is also linear in the number of joints, but the real-time coefficients are reduced by almost two orders of magnitude. The second formulation reports a new parallel algorithm which shows that it is possible to improve upon the linear time dependency. The real time required to perform the calculations increases only as the [log2] of the number of joints. Either formulation is susceptible to a systolic pipelined architecture in which complete sets of joint torques emerge at successive intervals of four floating-point operations. Hardware requirements necessary to support the algorithm are considered and found not to be excessive, and a VLSI implementation architecture is suggested. We indicate possible applications to incorporating dynamical considerations into trajectory planning, e.g. it may be possible to build an on-line trajectory optimizer.