3 resultados para Theories of Place

em Massachusetts Institute of Technology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comparative analysis is the problem of predicting how a system will react to perturbations in its parameters, and why. For example, comparative analysis could be asked to explain why the period of an oscillating spring/block system would increase if the mass of the block were larger. This thesis formalizes the task of comparative analysis and presents two solution techniques: differential qualitative (DQ) analysis and exaggeration. Both techniques solve many comparative analysis problems, providing explanations suitable for use by design systems, automated diagnosis, intelligent tutoring systems, and explanation based generalization. This thesis explains the theoretical basis for each technique, describes how they are implemented, and discusses the difference between the two. DQ analysis is sound; it never generates an incorrect answer to a comparative analysis question. Although exaggeration does occasionally produce misleading answers, it solves a larger class of problems than DQ analysis and frequently results in simpler explanations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reasoning about motion is an important part of our commonsense knowledge, involving fluent spatial reasoning. This work studies the qualitative and geometric knowledge required to reason in a world that consists of balls moving through space constrained by collisions with surfaces, including dissipative forces and multiple moving objects. An analog geometry representation serves the program as a diagram, allowing many spatial questions to be answered by numeric calculation. It also provides the foundation for the construction and use of place vocabulary, the symbolic descriptions of space required to do qualitative reasoning about motion in the domain. The actual motion of a ball is described as a network consisting of descriptions of qualitatively distinct types of motion. Implementing the elements of these networks in a constraint language allows the same elements to be used for both analysis and simulation of motion. A qualitative description of the actual motion is also used to check the consistency of assumptions about motion. A process of qualitative simulation is used to describe the kinds of motion possible from some state. The ambiguity inherent in such a description can be reduced by assumptions about physical properties of the ball or assumptions about its motion. Each assumption directly rules out some kinds of motion, but other knowledge is required to determine the indirect consequences of making these assumptions. Some of this knowledge is domain dependent and relies heavily on spatial descriptions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Computational theories of action have generally understood the organized nature of human activity through the construction and execution of plans. By consigning the phenomena of contingency and improvisation to peripheral roles, this view has led to impractical technical proposals. As an alternative, I suggest that contingency is a central feature of everyday activity and that improvisation is the central kind of human activity. I also offer a computational model of certain aspects of everyday routine activity based on an account of improvised activity called running arguments and an account of representation for situated agents called deictic representation .