2 resultados para Theoretical and empirical synthesis
em Massachusetts Institute of Technology
Resumo:
The need to generate new views of a 3D object from a single real image arises in several fields, including graphics and object recognition. While the traditional approach relies on the use of 3D models, we have recently introduced techniques that are applicable under restricted conditions but simpler. The approach exploits image transformations that are specific to the relevant object class and learnable from example views of other "prototypical" objects of the same class. In this paper, we introduce such a new technique by extending the notion of linear class first proposed by Poggio and Vetter. For linear object classes it is shown that linear transformations can be learned exactly from a basis set of 2D prototypical views. We demonstrate the approach on artificial objects and then show preliminary evidence that the technique can effectively "rotate" high- resolution face images from a single 2D view.
Resumo:
In most classical frameworks for learning from examples, it is assumed that examples are randomly drawn and presented to the learner. In this paper, we consider the possibility of a more active learner who is allowed to choose his/her own examples. Our investigations are carried out in a function approximation setting. In particular, using arguments from optimal recovery (Micchelli and Rivlin, 1976), we develop an adaptive sampling strategy (equivalent to adaptive approximation) for arbitrary approximation schemes. We provide a general formulation of the problem and show how it can be regarded as sequential optimal recovery. We demonstrate the application of this general formulation to two special cases of functions on the real line 1) monotonically increasing functions and 2) functions with bounded derivative. An extensive investigation of the sample complexity of approximating these functions is conducted yielding both theoretical and empirical results on test functions. Our theoretical results (stated insPAC-style), along with the simulations demonstrate the superiority of our active scheme over both passive learning as well as classical optimal recovery. The analysis of active function approximation is conducted in a worst-case setting, in contrast with other Bayesian paradigms obtained from optimal design (Mackay, 1992).