2 resultados para Tenement-houses
em Massachusetts Institute of Technology
Resumo:
In early stages of architectural design, as in other design domains, the language used is often very abstract. In architectural design, for example, architects and their clients use experiential terms such as "private" or "open" to describe spaces. If we are to build programs that can help designers during this early-stage design, we must give those programs the capability to deal with concepts on the level of such abstractions. The work reported in this thesis sought to do that, focusing on two key questions: How are abstract terms such as "private" and "open" translated into physical form? How might one build a tool to assist designers with this process? The Architect's Collaborator (TAC) was built to explore these issues. It is a design assistant that supports iterative design refinement, and that represents and reasons about how experiential qualities are manifested in physical form. Given a starting design and a set of design goals, TAC explores the space of possible designs in search of solutions that satisfy the goals. It employs a strategy we've called dependency-directed redesign: it evaluates a design with respect to a set of goals, then uses an explanation of the evaluation to guide proposal and refinement of repair suggestions; it then carries out the repair suggestions to create new designs. A series of experiments was run to study TAC's behavior. Issues of control structure, goal set size, goal order, and modification operator capabilities were explored. In addition, TAC's use as a design assistant was studied in an experiment using a house in the process of being redesigned. TAC's use as an analysis tool was studied in an experiment using Frank Lloyd Wright's Prairie houses.
Resumo:
Artifacts made by humans, such as items of furniture and houses, exhibit an enormous amount of variability in shape. In this paper, we concentrate on models of the shapes of objects that are made up of fixed collections of sub-parts whose dimensions and spatial arrangement exhibit variation. Our goals are: to learn these models from data and to use them for recognition. Our emphasis is on learning and recognition from three-dimensional data, to test the basic shape-modeling methodology. In this paper we also demonstrate how to use models learned in three dimensions for recognition of two-dimensional sketches of objects.