1 resultado para Temporal dimension
em Massachusetts Institute of Technology
Filtro por publicador
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Adam Mickiewicz University Repository (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Aquatic Commons (61)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (15)
- Aston University Research Archive (3)
- Biblioteca Digital da Câmara dos Deputados (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (23)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (1)
- Boston University Digital Common (16)
- Brock University, Canada (5)
- CaltechTHESIS (9)
- Cambridge University Engineering Department Publications Database (55)
- CentAUR: Central Archive University of Reading - UK (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (87)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons at Florida International University (2)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (15)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (17)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (2)
- Greenwich Academic Literature Archive - UK (20)
- Helda - Digital Repository of University of Helsinki (22)
- Indian Institute of Science - Bangalore - Índia (86)
- Infoteca EMBRAPA (9)
- Instituto Politécnico do Porto, Portugal (2)
- Massachusetts Institute of Technology (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (52)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (181)
- Queensland University of Technology - ePrints Archive (144)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (3)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositorio Institucional de la Universidad Nacional Agraria (4)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (12)
- Research Open Access Repository of the University of East London. (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (7)
- SAPIENTIA - Universidade do Algarve - Portugal (12)
- Universidad Autónoma de Nuevo León, Mexico (15)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (4)
- Universidad Politécnica Salesiana Ecuador (1)
- Universidade de Lisboa - Repositório Aberto (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universita di Parma (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (11)
- Université de Montréal, Canada (37)
- University of Washington (1)
- WestminsterResearch - UK (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (4)
Resumo:
This thesis investigates the problem of estimating the three-dimensional structure of a scene from a sequence of images. Structure information is recovered from images continuously using shading, motion or other visual mechanisms. A Kalman filter represents structure in a dense depth map. With each new image, the filter first updates the current depth map by a minimum variance estimate that best fits the new image data and the previous estimate. Then the structure estimate is predicted for the next time step by a transformation that accounts for relative camera motion. Experimental evaluation shows the significant improvement in quality and computation time that can be achieved using this technique.