3 resultados para Teleonomic Entropy

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a general framework for discriminative estimation based on the maximum entropy principle and its extensions. All calculations involve distributions over structures and/or parameters rather than specific settings and reduce to relative entropy projections. This holds even when the data is not separable within the chosen parametric class, in the context of anomaly detection rather than classification, or when the labels in the training set are uncertain or incomplete. Support vector machines are naturally subsumed under this class and we provide several extensions. We are also able to estimate exactly and efficiently discriminative distributions over tree structures of class-conditional models within this framework. Preliminary experimental results are indicative of the potential in these techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fundamental understanding of the information carrying capacity of optical channels requires the signal and physical channel to be modeled quantum mechanically. This thesis considers the problems of distributing multi-party quantum entanglement to distant users in a quantum communication system and determining the ability of quantum optical channels to reliably transmit information. A recent proposal for a quantum communication architecture that realizes long-distance, high-fidelity qubit teleportation is reviewed. Previous work on this communication architecture is extended in two primary ways. First, models are developed for assessing the effects of amplitude, phase, and frequency errors in the entanglement source of polarization-entangled photons, as well as fiber loss and imperfect polarization restoration, on the throughput and fidelity of the system. Second, an error model is derived for an extension of this communication architecture that allows for the production and storage of three-party entangled Greenberger-Horne-Zeilinger states. A performance analysis of the quantum communication architecture in qubit teleportation and quantum secret sharing communication protocols is presented. Recent work on determining the channel capacity of optical channels is extended in several ways. Classical capacity is derived for a class of Gaussian Bosonic channels representing the quantum version of classical colored Gaussian-noise channels. The proof is strongly mo- tivated by the standard technique of whitening Gaussian noise used in classical information theory. Minimum output entropy problems related to these channel capacity derivations are also studied. These single-user Bosonic capacity results are extended to a multi-user scenario by deriving capacity regions for single-mode and wideband coherent-state multiple access channels. An even larger capacity region is obtained when the transmitters use non- classical Gaussian states, and an outer bound on the ultimate capacity region is presented

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis addresses the problem of categorizing natural objects. To provide a criteria for categorization we propose that the purpose of a categorization is to support the inference of unobserved properties of objects from the observed properties. Because no such set of categories can be constructed in an arbitrary world, we present the Principle of Natural Modes as a claim about the structure of the world. We first define an evaluation function that measures how well a set of categories supports the inference goals of the observer. Entropy measures for property uncertainty and category uncertainty are combined through a free parameter that reflects the goals of the observer. Natural categorizations are shown to be those that are stable with respect to this free parameter. The evaluation function is tested in the domain of leaves and is found to be sensitive to the structure of the natural categories corresponding to the different species. We next develop a categorization paradigm that utilizes the categorization evaluation function in recovering natural categories. A statistical hypothesis generation algorithm is presented that is shown to be an effective categorization procedure. Examples drawn from several natural domains are presented, including data known to be a difficult test case for numerical categorization techniques. We next extend the categorization paradigm such that multiple levels of natural categories are recovered; by means of recursively invoking the categorization procedure both the genera and species are recovered in a population of anaerobic bacteria. Finally, a method is presented for evaluating the utility of features in recovering natural categories. This method also provides a mechanism for determining which features are constrained by the different processes present in a multiple modal world.