4 resultados para TO-TAIL COMPLEX

em Massachusetts Institute of Technology


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Explanation-based Generalization requires that the learner obtain an explanation of why a precedent exemplifies a concept. It is, therefore, useless if the system fails to find this explanation. However, it is not necessary to give up and resort to purely empirical generalization methods. In fact, the system may already know almost everything it needs to explain the precedent. Learning by Failing to Explain is a method which is able to exploit current knowledge to prune complex precedents, isolating the mysterious parts of the precedent. The idea has two parts: the notion of partially analyzing a precedent to get rid of the parts which are already explainable, and the notion of re-analyzing old rules in terms of new ones, so that more general rules are obtained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In my research, I have performed an extensive experimental investigation of harmonic-drive properties such as stiffness, friction, and kinematic error. From my experimental results, I have found that these properties can be sharply non-linear and highly dependent on operating conditions. Due to the complex interaction of these poorly behaved transmission properties, dynamic response measurements showed surprisingly agitated behavior, especially around system resonance. Theoretical models developed to mimic the observed response illustrated that non-linear frictional effects cannot be ignored in any accurate harmonic-drive representation. Additionally, if behavior around system resonance must be replicated, kinematic error and transmission compliance as well as frictional dissipation from gear-tooth rubbing must all be incorporated into the model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To engineer complex synthetic biological systems will require modular design, assembly, and characterization strategies. The RNA polymerase arrival rate (PAR) is defined to be the rate that RNA polymerases arrive at a specified location on the DNA. Designing and characterizing biological modules in terms of RNA polymerase arrival rates provides for many advantages in the construction and modeling of biological systems. PARMESAN is an in vitro method for measuring polymerase arrival rates using pyrrolo-dC, a fluorescent DNA base that can substitute for cytosine. Pyrrolo-dC shows a detectable fluorescence difference when in single-stranded versus double-stranded DNA. During transcription, RNA polymerase separates the two strands of DNA, leading to a change in the fluorescence of pyrrolo-dC. By incorporating pyrrolo-dC at specific locations in the DNA, fluorescence changes can be taken as a direct measurement of the polymerase arrival rate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most Artificial Intelligence (AI) work can be characterized as either ``high-level'' (e.g., logical, symbolic) or ``low-level'' (e.g., connectionist networks, behavior-based robotics). Each approach suffers from particular drawbacks. High-level AI uses abstractions that often have no relation to the way real, biological brains work. Low-level AI, on the other hand, tends to lack the powerful abstractions that are needed to express complex structures and relationships. I have tried to combine the best features of both approaches, by building a set of programming abstractions defined in terms of simple, biologically plausible components. At the ``ground level'', I define a primitive, perceptron-like computational unit. I then show how more abstract computational units may be implemented in terms of the primitive units, and show the utility of the abstract units in sample networks. The new units make it possible to build networks using concepts such as long-term memories, short-term memories, and frames. As a demonstration of these abstractions, I have implemented a simulator for ``creatures'' controlled by a network of abstract units. The creatures exist in a simple 2D world, and exhibit behaviors such as catching mobile prey and sorting colored blocks into matching boxes. This program demonstrates that it is possible to build systems that can interact effectively with a dynamic physical environment, yet use symbolic representations to control aspects of their behavior.