7 resultados para Superlinear and Semi–Superlinear Convergence

em Massachusetts Institute of Technology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Expectation-Maximization (EM) algorithm is an iterative approach to maximum likelihood parameter estimation. Jordan and Jacobs (1993) recently proposed an EM algorithm for the mixture of experts architecture of Jacobs, Jordan, Nowlan and Hinton (1991) and the hierarchical mixture of experts architecture of Jordan and Jacobs (1992). They showed empirically that the EM algorithm for these architectures yields significantly faster convergence than gradient ascent. In the current paper we provide a theoretical analysis of this algorithm. We show that the algorithm can be regarded as a variable metric algorithm with its searching direction having a positive projection on the gradient of the log likelihood. We also analyze the convergence of the algorithm and provide an explicit expression for the convergence rate. In addition, we describe an acceleration technique that yields a significant speedup in simulation experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Expectation-Maximization'' (EM) algorithm and gradient-based approaches for maximum likelihood learning of finite Gaussian mixtures. We show that the EM step in parameter space is obtained from the gradient via a projection matrix $P$, and we provide an explicit expression for the matrix. We then analyze the convergence of EM in terms of special properties of $P$ and provide new results analyzing the effect that $P$ has on the likelihood surface. Based on these mathematical results, we present a comparative discussion of the advantages and disadvantages of EM and other algorithms for the learning of Gaussian mixture models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent developments in the area of reinforcement learning have yielded a number of new algorithms for the prediction and control of Markovian environments. These algorithms, including the TD(lambda) algorithm of Sutton (1988) and the Q-learning algorithm of Watkins (1989), can be motivated heuristically as approximations to dynamic programming (DP). In this paper we provide a rigorous proof of convergence of these DP-based learning algorithms by relating them to the powerful techniques of stochastic approximation theory via a new convergence theorem. The theorem establishes a general class of convergent algorithms to which both TD(lambda) and Q-learning belong.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Local belief propagation rules of the sort proposed by Pearl(1988) are guaranteed to converge to the optimal beliefs for singly connected networks. Recently, a number of researchers have empirically demonstrated good performance of these same algorithms on networks with loops, but a theoretical understanding of this performance has yet to be achieved. Here we lay the foundation for an understanding of belief propagation in networks with loops. For networks with a single loop, we derive ananalytical relationship between the steady state beliefs in the loopy network and the true posterior probability. Using this relationship we show a category of networks for which the MAP estimate obtained by belief update and by belief revision can be proven to be optimal (although the beliefs will be incorrect). We show how nodes can use local information in the messages they receive in order to correct the steady state beliefs. Furthermore we prove that for all networks with a single loop, the MAP estimate obtained by belief revisionat convergence is guaranteed to give the globally optimal sequence of states. The result is independent of the length of the cycle and the size of the statespace. For networks with multiple loops, we introduce the concept of a "balanced network" and show simulati.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we consider the problem of approximating a function belonging to some funtion space Φ by a linear comination of n translates of a given function G. Ussing a lemma by Jones (1990) and Barron (1991) we show that it is possible to define function spaces and functions G for which the rate of convergence to zero of the erro is 0(1/n) in any number of dimensions. The apparent avoidance of the "curse of dimensionality" is due to the fact that these function spaces are more and more constrained as the dimension increases. Examples include spaces of the Sobolev tpe, in which the number of weak derivatives is required to be larger than the number of dimensions. We give results both for approximation in the L2 norm and in the Lc norm. The interesting feature of these results is that, thanks to the constructive nature of Jones" and Barron"s lemma, an iterative procedure is defined that can achieve this rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Each player in the financial industry, each bank, stock exchange, government agency, or insurance company operates its own financial information system or systems. By its very nature, financial information, like the money that it represents, changes hands. Therefore the interoperation of financial information systems is the cornerstone of the financial services they support. E-services frameworks such as web services are an unprecedented opportunity for the flexible interoperation of financial systems. Naturally the critical economic role and the complexity of financial information led to the development of various standards. Yet standards alone are not the panacea: different groups of players use different standards or different interpretations of the same standard. We believe that the solution lies in the convergence of flexible E-services such as web-services and semantically rich meta-data as promised by the semantic Web; then a mediation architecture can be used for the documentation, identification, and resolution of semantic conflicts arising from the interoperation of heterogeneous financial services. In this paper we illustrate the nature of the problem in the Electronic Bill Presentment and Payment (EBPP) industry and the viability of the solution we propose. We describe and analyze the integration of services using four different formats: the IFX, OFX and SWIFT standards, and an example proprietary format. To accomplish this integration we use the COntext INterchange (COIN) framework. The COIN architecture leverages a model of sources and receivers’ contexts in reference to a rich domain model or ontology for the description and resolution of semantic heterogeneity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the preconditioning of symmetric indefinite linear systems of equations that arise in interior point solution of linear optimization problems. The preconditioning method that we study exploits the block structure of the augmented matrix to design a similar block structure preconditioner to improve the spectral properties of the resulting preconditioned matrix so as to improve the convergence rate of the iterative solution of the system. We also propose a two-phase algorithm that takes advantage of the spectral properties of the transformed matrix to solve for the Newton directions in the interior-point method. Numerical experiments have been performed on some LP test problems in the NETLIB suite to demonstrate the potential of the preconditioning method discussed.