3 resultados para Sum of logistics
em Massachusetts Institute of Technology
Resumo:
There is a natural norm associated with a starting point of the homogeneous self-dual (HSD) embedding model for conic convex optimization. In this norm two measures of the HSD model’s behavior are precisely controlled independent of the problem instance: (i) the sizes of ε-optimal solutions, and (ii) the maximum distance of ε-optimal solutions to the boundary of the cone of the HSD variables. This norm is also useful in developing a stopping-rule theory for HSD-based interior-point methods such as SeDuMi. Under mild assumptions, we show that a standard stopping rule implicitly involves the sum of the sizes of the ε-optimal primal and dual solutions, as well as the size of the initial primal and dual infeasibility residuals. This theory suggests possible criteria for developing starting points for the homogeneous self-dual model that might improve the resulting solution time in practice
Resumo:
For applications involving the control of moving vehicles, the recovery of relative motion between a camera and its environment is of high utility. This thesis describes the design and testing of a real-time analog VLSI chip which estimates the focus of expansion (FOE) from measured time-varying images. Our approach assumes a camera moving through a fixed world with translational velocity; the FOE is the projection of the translation vector onto the image plane. This location is the point towards which the camera is moving, and other points appear to be expanding outward from. By way of the camera imaging parameters, the location of the FOE gives the direction of 3-D translation. The algorithm we use for estimating the FOE minimizes the sum of squares of the differences at every pixel between the observed time variation of brightness and the predicted variation given the assumed position of the FOE. This minimization is not straightforward, because the relationship between the brightness derivatives depends on the unknown distance to the surface being imaged. However, image points where brightness is instantaneously constant play a critical role. Ideally, the FOE would be at the intersection of the tangents to the iso-brightness contours at these "stationary" points. In practice, brightness derivatives are hard to estimate accurately given that the image is quite noisy. Reliable results can nevertheless be obtained if the image contains many stationary points and the point is found that minimizes the sum of squares of the perpendicular distances from the tangents at the stationary points. The FOE chip calculates the gradient of this least-squares minimization sum, and the estimation is performed by closing a feedback loop around it. The chip has been implemented using an embedded CCD imager for image acquisition and a row-parallel processing scheme. A 64 x 64 version was fabricated in a 2um CCD/ BiCMOS process through MOSIS with a design goal of 200 mW of on-chip power, a top frame rate of 1000 frames/second, and a basic accuracy of 5%. A complete experimental system which estimates the FOE in real time using real motion and image scenes is demonstrated.
Resumo:
Support Vector Machines (SVMs) perform pattern recognition between two point classes by finding a decision surface determined by certain points of the training set, termed Support Vectors (SV). This surface, which in some feature space of possibly infinite dimension can be regarded as a hyperplane, is obtained from the solution of a problem of quadratic programming that depends on a regularization parameter. In this paper we study some mathematical properties of support vectors and show that the decision surface can be written as the sum of two orthogonal terms, the first depending only on the margin vectors (which are SVs lying on the margin), the second proportional to the regularization parameter. For almost all values of the parameter, this enables us to predict how the decision surface varies for small parameter changes. In the special but important case of feature space of finite dimension m, we also show that there are at most m+1 margin vectors and observe that m+1 SVs are usually sufficient to fully determine the decision surface. For relatively small m this latter result leads to a consistent reduction of the SV number.