3 resultados para Sufficient conditions
em Massachusetts Institute of Technology
Resumo:
I have designed and implemented a system for the multilevel verification of synchronous MOS VLSI circuits. The system, called Silica Pithecus, accepts the schematic of an MOS circuit and a specification of the circuit's intended digital behavior. Silica Pithecus determines if the circuit meets its specification. If the circuit fails to meet its specification Silica Pithecus returns to the designer the reason for the failure. Unlike earlier verifiers which modelled primitives (e.g., transistors) as unidirectional digital devices, Silica Pithecus models primitives more realistically. Transistors are modelled as bidirectional devices of varying resistances, and nodes are modelled as capacitors. Silica Pithecus operates hierarchically, interactively, and incrementally. Major contributions of this research include a formal understanding of the relationship between different behavioral descriptions (e.g., signal, boolean, and arithmetic descriptions) of the same device, and a formalization of the relationship between the structure, behavior, and context of device. Given these formal structures my methods find sufficient conditions on the inputs of circuits which guarantee the correct operation of the circuit in the desired descriptive domain. These methods are algorithmic and complete. They also handle complex phenomena such as races and charge sharing. Informal notions such as races and hazards are shown to be derivable from the correctness conditions used by my methods.
Resumo:
When training Support Vector Machines (SVMs) over non-separable data sets, one sets the threshold $b$ using any dual cost coefficient that is strictly between the bounds of $0$ and $C$. We show that there exist SVM training problems with dual optimal solutions with all coefficients at bounds, but that all such problems are degenerate in the sense that the "optimal separating hyperplane" is given by ${f w} = {f 0}$, and the resulting (degenerate) SVM will classify all future points identically (to the class that supplies more training data). We also derive necessary and sufficient conditions on the input data for this to occur. Finally, we show that an SVM training problem can always be made degenerate by the addition of a single data point belonging to a certain unboundedspolyhedron, which we characterize in terms of its extreme points and rays.
Resumo:
Poggio and Vetter (1992) showed that learning one view of a bilaterally symmetric object could be sufficient for its recognition, if this view allows the computation of a symmetric, "virtual," view. Faces are roughly bilaterally symmetric objects. Learning a side-view--which always has a symmetric view--should allow for better generalization performances than learning the frontal view. Two psychophysical experiments tested these predictions. Stimuli were views of shaded 3D models of laser-scanned faces. The first experiment tested whether a particular view of a face was canonical. The second experiment tested which single views of a face give rise to best generalization performances. The results were compatible with the symmetry hypothesis: Learning a side view allowed better generalization performances than learning the frontal view.