2 resultados para Subjective-probability
em Massachusetts Institute of Technology
Resumo:
Graphical techniques for modeling the dependencies of randomvariables have been explored in a variety of different areas includingstatistics, statistical physics, artificial intelligence, speech recognition, image processing, and genetics.Formalisms for manipulating these models have been developedrelatively independently in these research communities. In this paper weexplore hidden Markov models (HMMs) and related structures within the general framework of probabilistic independencenetworks (PINs). The paper contains a self-contained review of the basic principles of PINs.It is shown that the well-known forward-backward (F-B) and Viterbialgorithms for HMMs are special cases of more general inference algorithms forarbitrary PINs. Furthermore, the existence of inference and estimationalgorithms for more general graphical models provides a set of analysistools for HMM practitioners who wish to explore a richer class of HMMstructures.Examples of relatively complex models to handle sensorfusion and coarticulationin speech recognitionare introduced and treated within the graphical model framework toillustrate the advantages of the general approach.
Resumo:
It is proposed that subjective contours are an artifact of the perception of natural three-dimensional surfaces. A recent theory of surface interpolation implies that "subjective surfaces" are constructed in the visual system by interpolation between three-dimensional values arising from interpretation of a variety of surface cues. We show that subjective surfaces can take any form, including singly and doubly curved surfaces, as well as the commonly discussed fronto-parallel planes. In addition, it is necessary in the context of computational vision to make explicit the discontinuities, both in depth and in surface orientation, in the surfaces constructed by interpolation. It is proposed that subjective surfaces and subjective contours are demonstrated. The role played by figure completion and enhanced brightness contrast in the determination of subjective surfaces is discussed. All considerations of surface perception apply equally to subjective surfaces.