1 resultado para Subjectivation means
em Massachusetts Institute of Technology
Filtro por publicador
- Repository Napier (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (5)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Aquatic Commons (12)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (81)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (8)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (5)
- Biodiversity Heritage Library, United States (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (71)
- Boston College Law School, Boston College (BC), United States (1)
- Brock University, Canada (4)
- Cambridge University Engineering Department Publications Database (28)
- CentAUR: Central Archive University of Reading - UK (40)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (36)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (9)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Peer Publishing (4)
- Digital Repository at Iowa State University (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (4)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Greenwich Academic Literature Archive - UK (2)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (6)
- Indian Institute of Science - Bangalore - Índia (21)
- Instituto Politécnico do Porto, Portugal (7)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (12)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (12)
- Publishing Network for Geoscientific & Environmental Data (105)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (65)
- Queensland University of Technology - ePrints Archive (42)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (41)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (7)
- Universidad Politécnica de Madrid (41)
- Universidade de Lisboa - Repositório Aberto (3)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (6)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (1)
- University of Michigan (185)
- University of Southampton, United Kingdom (2)
- WestminsterResearch - UK (3)
Resumo:
In this paper we present some extensions to the k-means algorithm for vector quantization that permit its efficient use in image segmentation and pattern classification tasks. It is shown that by introducing state variables that correspond to certain statistics of the dynamic behavior of the algorithm, it is possible to find the representative centers fo the lower dimensional maniforlds that define the boundaries between classes, for clouds of multi-dimensional, mult-class data; this permits one, for example, to find class boundaries directly from sparse data (e.g., in image segmentation tasks) or to efficiently place centers for pattern classification (e.g., with local Gaussian classifiers). The same state variables can be used to define algorithms for determining adaptively the optimal number of centers for clouds of data with space-varying density. Some examples of the applicatin of these extensions are also given.