5 resultados para Structure learning
em Massachusetts Institute of Technology
Resumo:
This thesis examines the problem of an autonomous agent learning a causal world model of its environment. Previous approaches to learning causal world models have concentrated on environments that are too "easy" (deterministic finite state machines) or too "hard" (containing much hidden state). We describe a new domain --- environments with manifest causal structure --- for learning. In such environments the agent has an abundance of perceptions of its environment. Specifically, it perceives almost all the relevant information it needs to understand the environment. Many environments of interest have manifest causal structure and we show that an agent can learn the manifest aspects of these environments quickly using straightforward learning techniques. We present a new algorithm to learn a rule-based causal world model from observations in the environment. The learning algorithm includes (1) a low level rule-learning algorithm that converges on a good set of specific rules, (2) a concept learning algorithm that learns concepts by finding completely correlated perceptions, and (3) an algorithm that learns general rules. In addition this thesis examines the problem of finding a good expert from a sequence of experts. Each expert has an "error rate"; we wish to find an expert with a low error rate. However, each expert's error rate and the distribution of error rates are unknown. A new expert-finding algorithm is presented and an upper bound on the expected error rate of the expert is derived.
Resumo:
In a recent seminal paper, Gibson and Wexler (1993) take important steps to formalizing the notion of language learning in a (finite) space whose grammars are characterized by a finite number of parameters. They introduce the Triggering Learning Algorithm (TLA) and show that even in finite space convergence may be a problem due to local maxima. In this paper we explicitly formalize learning in finite parameter space as a Markov structure whose states are parameter settings. We show that this captures the dynamics of TLA completely and allows us to explicitly compute the rates of convergence for TLA and other variants of TLA e.g. random walk. Also included in the paper are a corrected version of GW's central convergence proof, a list of "problem states" in addition to local maxima, and batch and PAC-style learning bounds for the model.
Resumo:
Trees are a common way of organizing large amounts of information by placing items with similar characteristics near one another in the tree. We introduce a classification problem where a given tree structure gives us information on the best way to label nearby elements. We suggest there are many practical problems that fall under this domain. We propose a way to map the classification problem onto a standard Bayesian inference problem. We also give a fast, specialized inference algorithm that incrementally updates relevant probabilities. We apply this algorithm to web-classification problems and show that our algorithm empirically works well.
Resumo:
The goal of this thesis is to apply the computational approach to motor learning, i.e., describe the constraints that enable performance improvement with experience and also the constraints that must be satisfied by a motor learning system, describe what is being computed in order to achieve learning, and why it is being computed. The particular tasks used to assess motor learning are loaded and unloaded free arm movement, and the thesis includes work on rigid body load estimation, arm model estimation, optimal filtering for model parameter estimation, and trajectory learning from practice. Learning algorithms have been developed and implemented in the context of robot arm control. The thesis demonstrates some of the roles of knowledge in learning. Powerful generalizations can be made on the basis of knowledge of system structure, as is demonstrated in the load and arm model estimation algorithms. Improving the performance of parameter estimation algorithms used in learning involves knowledge of the measurement noise characteristics, as is shown in the derivation of optimal filters. Using trajectory errors to correct commands requires knowledge of how command errors are transformed into performance errors, i.e., an accurate model of the dynamics of the controlled system, as is demonstrated in the trajectory learning work. The performance demonstrated by the algorithms developed in this thesis should be compared with algorithms that use less knowledge, such as table based schemes to learn arm dynamics, previous single trajectory learning algorithms, and much of traditional adaptive control.
Resumo:
The objects with which the hand interacts with may significantly change the dynamics of the arm. How does the brain adapt control of arm movements to this new dynamic? We show that adaptation is via composition of a model of the task's dynamics. By exploring generalization capabilities of this adaptation we infer some of the properties of the computational elements with which the brain formed this model: the elements have broad receptive fields and encode the learned dynamics as a map structured in an intrinsic coordinate system closely related to the geometry of the skeletomusculature. The low--level nature of these elements suggests that they may represent asset of primitives with which a movement is represented in the CNS.