1 resultado para Structure learning
em Massachusetts Institute of Technology
Filtro por publicador
- JISC Information Environment Repository (1)
- Abertay Research Collections - Abertay University’s repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (9)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Aston University Research Archive (19)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (133)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (5)
- Brock University, Canada (11)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CentAUR: Central Archive University of Reading - UK (13)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (10)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (9)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (3)
- Glasgow Theses Service (2)
- Instituto Politécnico do Porto, Portugal (131)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (8)
- Nottingham eTheses (2)
- Open Access Repository of Association for Learning Technology (ALT) (2)
- Open University Netherlands (1)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (6)
- Repositório Aberto da Universidade Aberta de Portugal (2)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (62)
- Repositório da Produção Científica e Intelectual da Unicamp (26)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (4)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (7)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (25)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (7)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (15)
- Universidade do Minho (1)
- Universidade dos Açores - Portugal (13)
- Universidade Federal do Pará (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (11)
- Université de Montréal, Canada (2)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (1)
- University of Queensland eSpace - Australia (349)
- University of Southampton, United Kingdom (1)
- University of Washington (5)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
The objects with which the hand interacts with may significantly change the dynamics of the arm. How does the brain adapt control of arm movements to this new dynamic? We show that adaptation is via composition of a model of the task's dynamics. By exploring generalization capabilities of this adaptation we infer some of the properties of the computational elements with which the brain formed this model: the elements have broad receptive fields and encode the learned dynamics as a map structured in an intrinsic coordinate system closely related to the geometry of the skeletomusculature. The low--level nature of these elements suggests that they may represent asset of primitives with which a movement is represented in the CNS.