3 resultados para Structural frames

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methods are developed for predicting vibration response characteristics of systems which change configuration during operation. A cartesian robot, an example of such a position-dependent system, served as a test case for these methods and was studied in detail. The chosen system model was formulated using the technique of Component Mode Synthesis (CMS). The model assumes that he system is slowly varying, and connects the carriages to each other and to the robot structure at the slowly varying connection points. The modal data required for each component is obtained experimentally in order to get a realistic model. The analysis results in prediction of vibrations that are produced by the inertia forces as well as gravity and friction forces which arise when the robot carriages move with some prescribed motion. Computer simulations and experimental determinations are conducted in order to calculate the vibrations at the robot end-effector. Comparisons are shown to validate the model in two ways: for fixed configuration the mode shapes and natural frequencies are examined, and then for changing configuration the residual vibration at the end of the mode is evaluated. A preliminary study was done on a geometrically nonlinear system which also has position-dependency. The system consisted of a flexible four-bar linkage with elastic input and output shafts. The behavior of the rocker-beam is analyzed for different boundary conditions to show how some limiting cases are obtained. A dimensional analysis leads to an evaluation of the consequences of dynamic similarity on the resulting vibration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new formulation for recovering the structure and motion parameters of a moving patch using both motion and shading information is presented. It is based on a new differential constraint equation (FICE) that links the spatiotemporal gradients of irradiance to the motion and structure parameters and the temporal variations of the surface shading. The FICE separates the contribution to the irradiance spatiotemporal gradients of the gradients due to texture from those due to shading and allows the FICE to be used for textured and textureless surface. The new approach, combining motion and shading information, leads directly to two different contributions: it can compensate for the effects of shading variations in recovering the shape and motion; and it can exploit the shading/illumination effects to recover motion and shape when they cannot be recovered without it. The FICE formulation is also extended to multiple frames.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

by John M. Barentine.