2 resultados para Strip casting

em Massachusetts Institute of Technology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method will be described for finding the shape of a smooth apaque object form a monocular image, given a knowledge of the surface photometry, the position of the lightsource and certain auxiliary information to resolve ambiguities. This method is complementary to the use of stereoscopy which relies on matching up sharp detail and will fail on smooth objects. Until now the image processing of single views has been restricted to objects which can meaningfully be considered two-dimensional or bounded by plane surfaces. It is possible to derive a first-order non-linear partial differential equation in two unknowns relating the intensity at the image points to the shape of the objects. This equation can be solved by means of an equivalent set of five ordinary differential equations. A curve traced out by solving this set of equations for one set of starting values is called a characteristic strip. Starting one of these strips from each point on some initial curve will produce the whole solution surface. The initial curves can usually be constructed around so-called singular points. A number of applications of this metod will be discussed including one to lunar topography and one to the scanning electron microscope. In both of these cases great simplifications occur in the equations. A note on polyhedra follows and a quantitative theory of facial make-up is touched upon. An implementation of some of these ideas on the PDP-6 computer with its attached image-dissector camera at the Artificial intelligence Laboratory will be described, and also a nose-recognition program.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report explores the relation between image intensity and object shape. It is shown that image intensity is related to surface orientation and that a variation in image intensity is related to surface curvature. Computational methods are developed which use the measured intensity variation across surfaces of smooth objects to determine surface orientation. In general, surface orientation is not determined locally by the intensity value recorded at each image point. Tools are needed to explore the problem of determining surface orientation from image intensity. The notion of gradient space , popularized by Huffman and Mackworth, is used to represent surface orientation. The notion of a reflectance map, originated by Horn, is used to represent the relation between surface orientation image intensity. The image Hessian is defined and used to represent surface curvature. Properties of surface curvature are expressed as constraints on possible surface orientations corresponding to a given image point. Methods are presented which embed assumptions about surface curvature in algorithms for determining surface orientation from the intensities recorded in a single view. If additional images of the same object are obtained by varying the direction of incident illumination, then surface orientation is determined locally by the intensity values recorded at each image point. This fact is exploited in a new technique called photometric stereo. The visual inspection of surface defects in metal castings is considered. Two casting applications are discussed. The first is the precision investment casting of turbine blades and vanes for aircraft jet engines. In this application, grain size is an important process variable. The existing industry standard for estimating the average grain size of metals is implemented and demonstrated on a sample turbine vane. Grain size can be computed form the measurements obtained in an image, once the foreshortening effects of surface curvature are accounted for. The second is the green sand mold casting of shuttle eyes for textile looms. Here, physical constraints inherent to the casting process translate into these constraints, it is necessary to interpret features of intensity as features of object shape. Both applications demonstrate that successful visual inspection requires the ability to interpret observed changes in intensity in the context of surface topography. The theoretical tools developed in this report provide a framework for this interpretation.