8 resultados para Steiner tree problem

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chow and Liu introduced an algorithm for fitting a multivariate distribution with a tree (i.e. a density model that assumes that there are only pairwise dependencies between variables) and that the graph of these dependencies is a spanning tree. The original algorithm is quadratic in the dimesion of the domain, and linear in the number of data points that define the target distribution $P$. This paper shows that for sparse, discrete data, fitting a tree distribution can be done in time and memory that is jointly subquadratic in the number of variables and the size of the data set. The new algorithm, called the acCL algorithm, takes advantage of the sparsity of the data to accelerate the computation of pairwise marginals and the sorting of the resulting mutual informations, achieving speed ups of up to 2-3 orders of magnitude in the experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trees are a common way of organizing large amounts of information by placing items with similar characteristics near one another in the tree. We introduce a classification problem where a given tree structure gives us information on the best way to label nearby elements. We suggest there are many practical problems that fall under this domain. We propose a way to map the classification problem onto a standard Bayesian inference problem. We also give a fast, specialized inference algorithm that incrementally updates relevant probabilities. We apply this algorithm to web-classification problems and show that our algorithm empirically works well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional models which contain both geometry and texture have numerous applications such as urban planning, physical simulation, and virtual environments. A major focus of computer vision (and recently graphics) research is the automatic recovery of three-dimensional models from two-dimensional images. After many years of research this goal is yet to be achieved. Most practical modeling systems require substantial human input and unlike automatic systems are not scalable. This thesis presents a novel method for automatically recovering dense surface patches using large sets (1000's) of calibrated images taken from arbitrary positions within the scene. Physical instruments, such as Global Positioning System (GPS), inertial sensors, and inclinometers, are used to estimate the position and orientation of each image. Essentially, the problem is to find corresponding points in each of the images. Once a correspondence has been established, calculating its three-dimensional position is simply a matter of geometry. Long baseline images improve the accuracy. Short baseline images and the large number of images greatly simplifies the correspondence problem. The initial stage of the algorithm is completely local and scales linearly with the number of images. Subsequent stages are global in nature, exploit geometric constraints, and scale quadratically with the complexity of the underlying scene. We describe techniques for: 1) detecting and localizing surface patches; 2) refining camera calibration estimates and rejecting false positive surfels; and 3) grouping surface patches into surfaces and growing the surface along a two-dimensional manifold. We also discuss a method for producing high quality, textured three-dimensional models from these surfaces. Some of the most important characteristics of this approach are that it: 1) uses and refines noisy calibration estimates; 2) compensates for large variations in illumination; 3) tolerates significant soft occlusion (e.g. tree branches); and 4) associates, at a fundamental level, an estimated normal (i.e. no frontal-planar assumption) and texture with each surface patch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes a system that synthesizes regularity exposing attributes from large protein databases. After processing primary and secondary structure data, this system discovers an amino acid representation that captures what are thought to be the three most important amino acid characteristics (size, charge, and hydrophobicity) for tertiary structure prediction. A neural network trained using this 16 bit representation achieves a performance accuracy on the secondary structure prediction problem that is comparable to the one achieved by a neural network trained using the standard 24 bit amino acid representation. In addition, the thesis describes bounds on secondary structure prediction accuracy, derived using an optimal learning algorithm and the probably approximately correct (PAC) model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report presents a system for generating a stable, feasible, and reachable grasp of a polyhedral object. A set of contact points on the object is found that can result in a stable grasp; a feasible grasp is found in which the robot contacts the object at those contact points; and a path is constructed from the initial configuration of the robot to the stable, feasible final grasp configuration. The algorithm described in the report is designed for the Salisbury hand mounted on a Puma 560 arm, but a similar approach could be used to develop grasping systems for other robots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The STUDENT problem solving system, programmed in LISP, accepts as input a comfortable but restricted subset of English which can express a wide variety of algebra story problems. STUDENT finds the solution to a large class of these problems. STUDENT can utilize a store of global information not specific to any one problem, and may make assumptions about the interpretation of ambiguities in the wording of the problem being solved. If it uses such information or makes any assumptions, STUDENT communicates this fact to the user. The thesis includes a summary of other English language questions-answering systems. All these systems, and STUDENT, are evaluated according to four standard criteria. The linguistic analysis in STUDENT is a first approximation to the analytic portion of a semantic theory of discourse outlined in the thesis. STUDENT finds the set of kernel sentences which are the base of the input discourse, and transforms this sequence of kernel sentences into a set of simultaneous equations which form the semantic base of the STUDENT system. STUDENT then tries to solve this set of equations for the values of requested unknowns. If it is successful it gives the answers in English. If not, STUDENT asks the user for more information, and indicates the nature of the desired information. The STUDENT system is a first step toward natural language communication with computers. Further work on the semantic theory proposed should result in much more sophisticated systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis developed here is that reasoning programs which take care to record the logical justifications for program beliefs can apply several powerful, but simple, domain-independent algorithms to (1) maintain the consistency of program beliefs, (2) realize substantial search efficiencies, and (3) automatically summarize explanations of program beliefs. These algorithms are the recorded justifications to maintain the consistency and well founded basis of the set of beliefs. The set of beliefs can be efficiently updated in an incremental manner when hypotheses are retracted and when new information is discovered. The recorded justifications also enable the pinpointing of exactly whose assumptions which support any particular belief. The ability to pinpoint the underlying assumptions is the basis for an extremely powerful domain-independent backtracking method. This method, called Dependency-Directed Backtracking, offers vastly improved performance over traditional backtracking algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical circuit designers seldom create really new topologies or use old ones in a novel way. Most designs are known combinations of common configurations tailored for the particular problem at hand. In this thesis I show that much of the behavior of a designer engaged in such ordinary design can be modelled by a clearly defined computational mechanism executing a set of stylized rules. Each of my rules embodies a particular piece of the designer's knowledge. A circuit is represented as a hierarchy of abstract objects, each of which is composed of other objects. The leaves of this tree represent the physical devices from which physical circuits are fabricated. By analogy with context-free languages, a class of circuits is generated by a phrase-structure grammar of which each rule describes how one type of abstract object can be expanded into a combination of more concrete parts. Circuits are designed by first postulating an abstract object which meets the particular design requirements. This object is then expanded into a concrete circuit by successive refinement using rules of my grammar. There are in general many rules which can be used to expand a given abstract component. Analysis must be done at each level of the expansion to constrain the search to a reasonable set. Thus the rule of my circuit grammar provide constraints which allow the approximate qualitative analysis of partially instantiated circuits. Later, more careful analysis in terms of more concrete components may lead to the rejection of a line of expansion which at first looked promising. I provide special failure rules to direct the repair in this case.