1 resultado para Statistical analysis techniques
em Massachusetts Institute of Technology
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (23)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (6)
- Aquatic Commons (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (8)
- Aston University Research Archive (30)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (20)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (134)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (8)
- Biodiversity Heritage Library, United States (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (38)
- Brock University, Canada (5)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CentAUR: Central Archive University of Reading - UK (32)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (3)
- Cochin University of Science & Technology (CUSAT), India (9)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (27)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Dalarna University College Electronic Archive (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (21)
- DigitalCommons@The Texas Medical Center (10)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (13)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (1)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Galway Mayo Institute of Technology, Ireland (5)
- Institute of Public Health in Ireland, Ireland (1)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (16)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (9)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (3)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (4)
- Nottingham eTheses (4)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (2)
- Publishing Network for Geoscientific & Environmental Data (32)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (4)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Aberto da Universidade Aberta de Portugal (2)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (10)
- Repositório da Produção Científica e Intelectual da Unicamp (52)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade de Brasília (2)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (130)
- Repositorio Institucional Universidad de Medellín (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (13)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo España (1)
- Scielo Saúde Pública - SP (34)
- Universidad de Alicante (8)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (41)
- Universidade Complutense de Madrid (2)
- Universidade do Minho (4)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (12)
- Universitat de Girona, Spain (15)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (28)
- Université de Montréal (1)
- Université de Montréal, Canada (13)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (1)
- University of Michigan (23)
- University of Queensland eSpace - Australia (36)
- University of Washington (1)
Resumo:
Modeling and predicting co-occurrences of events is a fundamental problem of unsupervised learning. In this contribution we develop a statistical framework for analyzing co-occurrence data in a general setting where elementary observations are joint occurrences of pairs of abstract objects from two finite sets. The main challenge for statistical models in this context is to overcome the inherent data sparseness and to estimate the probabilities for pairs which were rarely observed or even unobserved in a given sample set. Moreover, it is often of considerable interest to extract grouping structure or to find a hierarchical data organization. A novel family of mixture models is proposed which explain the observed data by a finite number of shared aspects or clusters. This provides a common framework for statistical inference and structure discovery and also includes several recently proposed models as special cases. Adopting the maximum likelihood principle, EM algorithms are derived to fit the model parameters. We develop improved versions of EM which largely avoid overfitting problems and overcome the inherent locality of EM--based optimization. Among the broad variety of possible applications, e.g., in information retrieval, natural language processing, data mining, and computer vision, we have chosen document retrieval, the statistical analysis of noun/adjective co-occurrence and the unsupervised segmentation of textured images to test and evaluate the proposed algorithms.