4 resultados para Statistical Process Control (SPC)

em Massachusetts Institute of Technology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A promising technique for the large-scale manufacture of micro-fluidic devices and photonic devices is hot embossing of polymers such as PMMA. Micro-embossing is a deformation process where the workpiece material is heated to permit easier material flow and then forced over a planar patterned tool. While there has been considerable, attention paid to process feasibility very little effort has been put into production issues such as process capability and eventual process control. In this paper, we present initial studies aimed at identifying the origins and magnitude of variability for embossing features at the micron scale in PMMA. Test parts with features ranging from 3.5- 630 µm wide and 0.9 µm deep were formed. Measurements at this scale proved very difficult, and only atomic force microscopy was able to provide resolution sufficient to identify process variations. It was found that standard deviations of widths at the 3-4 µm scale were on the order of 0.5 µm leading to a coefficient of variation as high as 13%. Clearly, the transition from test to manufacturing for this process will require understanding the causes of this variation and devising control methods to minimize its magnitude over all types of parts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper analyzes a proposed release controlmethodology, WIPLOAD Control (WIPLCtrl), using a transfer line case modeled by Markov process modeling methodology. The performance of WIPLCtrl is compared with that of CONWIP under 13 system configurations in terms of throughput, average inventory level, as well as average cycle time. As a supplement to the analytical model, a simulation model of the transfer line is used to observe the performance of the release control methodologies on the standard deviation of cycle time. From the analysis, we identify the system configurations in which the advantages of WIPLCtrl could be observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a new statistical, model-based approach to building a contact state observer. The observer uses measurements of the contact force and position, and prior information about the task encoded in a graph, to determine the current location of the robot in the task configuration space. Each node represents what the measurements will look like in a small region of configuration space by storing a predictive, statistical, measurement model. This approach assumes that the measurements are statistically block independent conditioned on knowledge of the model, which is a fairly good model of the actual process. Arcs in the graph represent possible transitions between models. Beam Viterbi search is used to match measurement history against possible paths through the model graph in order to estimate the most likely path for the robot. The resulting approach provides a new decision process that can be use as an observer for event driven manipulation programming. The decision procedure is significantly more robust than simple threshold decisions because the measurement history is used to make decisions. The approach can be used to enhance the capabilities of autonomous assembly machines and in quality control applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a statistical image-based shape + structure model for Bayesian visual hull reconstruction and 3D structure inference. The 3D shape of a class of objects is represented by sets of contours from silhouette views simultaneously observed from multiple calibrated cameras. Bayesian reconstructions of new shapes are then estimated using a prior density constructed with a mixture model and probabilistic principal components analysis. We show how the use of a class-specific prior in a visual hull reconstruction can reduce the effect of segmentation errors from the silhouette extraction process. The proposed method is applied to a data set of pedestrian images, and improvements in the approximate 3D models under various noise conditions are shown. We further augment the shape model to incorporate structural features of interest; unknown structural parameters for a novel set of contours are then inferred via the Bayesian reconstruction process. Model matching and parameter inference are done entirely in the image domain and require no explicit 3D construction. Our shape model enables accurate estimation of structure despite segmentation errors or missing views in the input silhouettes, and works even with only a single input view. Using a data set of thousands of pedestrian images generated from a synthetic model, we can accurately infer the 3D locations of 19 joints on the body based on observed silhouette contours from real images.