2 resultados para Static axical load
em Massachusetts Institute of Technology
Resumo:
This paper describes a general, trainable architecture for object detection that has previously been applied to face and peoplesdetection with a new application to car detection in static images. Our technique is a learning based approach that uses a set of labeled training data from which an implicit model of an object class -- here, cars -- is learned. Instead of pixel representations that may be noisy and therefore not provide a compact representation for learning, our training images are transformed from pixel space to that of Haar wavelets that respond to local, oriented, multiscale intensity differences. These feature vectors are then used to train a support vector machine classifier. The detection of cars in images is an important step in applications such as traffic monitoring, driver assistance systems, and surveillance, among others. We show several examples of car detection on out-of-sample images and show an ROC curve that highlights the performance of our system.
Resumo:
This article studies the static pricing problem of a network service provider who has a fixed capacity and faces different types of customers (classes). Each type of customers can have its own capacity constraint but it is assumed that all classes have the same resource requirement. The provider must decide a static price for each class. The customer types are characterized by their arrival process, with a price-dependant arrival rate, and the random time they remain in the system. Many real-life situations could fit in this framework, for example an Internet provider or a call center, but originally this problem was thought for a company that sells phone-cards and needs to set the price-per-minute for each destination. Our goal is to characterize the optimal static prices in order to maximize the provider's revenue. We note that the model here presented, with some slight modifications and additional assumptions can be used in those cases when the objective is to maximize social welfare.