28 resultados para Standard map
em Massachusetts Institute of Technology
Resumo:
Studying chaotic behavior in nonlinear systems requires numerous computations in order to simulate the behavior of such systems. The Standard Map Machine was designed and implemented as a special computer for performing these intensive computations with high-speed and high-precision. Its impressive performance is due to its simple architecture specialized to the numerical computations required of nonlinear systems. This report discusses the design and implementation of the Standard Map Machine and its use in the study of nonlinear mappings; in particular, the study of the standard map.
Resumo:
This report explores the relation between image intensity and object shape. It is shown that image intensity is related to surface orientation and that a variation in image intensity is related to surface curvature. Computational methods are developed which use the measured intensity variation across surfaces of smooth objects to determine surface orientation. In general, surface orientation is not determined locally by the intensity value recorded at each image point. Tools are needed to explore the problem of determining surface orientation from image intensity. The notion of gradient space , popularized by Huffman and Mackworth, is used to represent surface orientation. The notion of a reflectance map, originated by Horn, is used to represent the relation between surface orientation image intensity. The image Hessian is defined and used to represent surface curvature. Properties of surface curvature are expressed as constraints on possible surface orientations corresponding to a given image point. Methods are presented which embed assumptions about surface curvature in algorithms for determining surface orientation from the intensities recorded in a single view. If additional images of the same object are obtained by varying the direction of incident illumination, then surface orientation is determined locally by the intensity values recorded at each image point. This fact is exploited in a new technique called photometric stereo. The visual inspection of surface defects in metal castings is considered. Two casting applications are discussed. The first is the precision investment casting of turbine blades and vanes for aircraft jet engines. In this application, grain size is an important process variable. The existing industry standard for estimating the average grain size of metals is implemented and demonstrated on a sample turbine vane. Grain size can be computed form the measurements obtained in an image, once the foreshortening effects of surface curvature are accounted for. The second is the green sand mold casting of shuttle eyes for textile looms. Here, physical constraints inherent to the casting process translate into these constraints, it is necessary to interpret features of intensity as features of object shape. Both applications demonstrate that successful visual inspection requires the ability to interpret observed changes in intensity in the context of surface topography. The theoretical tools developed in this report provide a framework for this interpretation.
Resumo:
Trees are a common way of organizing large amounts of information by placing items with similar characteristics near one another in the tree. We introduce a classification problem where a given tree structure gives us information on the best way to label nearby elements. We suggest there are many practical problems that fall under this domain. We propose a way to map the classification problem onto a standard Bayesian inference problem. We also give a fast, specialized inference algorithm that incrementally updates relevant probabilities. We apply this algorithm to web-classification problems and show that our algorithm empirically works well.