2 resultados para Spheroids, Cellular

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cellular automaton is an iterative array of very simple identical information processing machines called cells. Each cell can communicate with neighboring cells. At discrete moments of time the cells can change from one state to another as a function of the states of the cell and its neighbors. Thus on a global basis, the collection of cells is characterized by some type of behavior. The goal of this investigation was to determine just how simple the individual cells could be while the global behavior achieved some specified criterion of complexity ??ually the ability to perform a computation or to reproduce some pattern. The chief result described in this thesis is that an array of identical square cells (in two dimensions), each cell of which communicates directly with only its four nearest edge neighbors and each of which can exist in only two states, can perform any computation. This computation proceeds in a straight forward way. A configuration is a specification of the states of all the cells in some area of the iterative array. Another result described in this thesis is the existence of a self-reproducing configuration in an array of four-state cells, a reduction of four states from the previously known eight-state case. The technique of information processing in cellular arrays involves the synthesis of some basic components. Then the desired behaviors are obtained by the interconnection of these components. A chapter on components describes some sets of basic components. Possible applications of the results of this investigation, descriptions of some interesting phenomena (for vanishingly small cells), and suggestions for further study are given later.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone morphogenetic protein-2 (BMP-2) has the ability to induce osteoblast differentiation of undifferentiated cells, resulting in the healing of skeletal defects when delivered with a suitable carrier. We have applied a versatile delivery platform comprising a novel composite of two biomaterials with proven track records – apatite and poly(lactic-co-glycolic acid) (PLGA) – to the delivery of BMP-2. Sustained release of this growth factor was tuned with variables that affect polymer degradation and/or apatite dissolution, such as polymer molecular weight, polymer composition, apatite loading, and apatite particle size. The effect of released BMP-2 on C3H10T1/2 murine pluripotent mesenchymal cells was assessed by tracking the expression of osteoblastic makers, alkaline phosphatase (ALP) and osteocalcin. Release media collected over 100 days induced elevated ALP activity in C3H10T1/2 cells. The expression of osteocalcin was also upregulated significantly. These results demonstrated the potential of apatite-PLGA composite particles for releasing protein in bioactive form over extended periods of time.