4 resultados para Spherical Geometry
em Massachusetts Institute of Technology
Resumo:
We propose an affine framework for perspective views, captured by a single extremely simple equation based on a viewer-centered invariant we call "relative affine structure". Via a number of corollaries of our main results we show that our framework unifies previous work --- including Euclidean, projective and affine --- in a natural and simple way, and introduces new, extremely simple, algorithms for the tasks of reconstruction from multiple views, recognition by alignment, and certain image coding applications.
Resumo:
We describe a software package for computing and manipulating the subdivision of a sphere by a collection of (not necessarily great) circles and for computing the boundary surface of the union of spheres. We present problems that arise in the implementation of the software and the solutions that we have found for them. At the core of the paper is a novel perturbation scheme to overcome degeneracies and precision problems in computing spherical arrangements while using floating point arithmetic. The scheme is relatively simple, it balances between the efficiency of computation and the magnitude of the perturbation, and it performs well in practice. In one O(n) time pass through the data, it perturbs the inputs necessary to insure no potential degeneracies and then passes the perturbed inputs on to the geometric algorithm. We report and discuss experimental results. Our package is a major component in a larger package aimed to support geometric queries on molecular models; it is currently employed by chemists working in "rational drug design." The spherical subdivisions are used to construct a geometric model of a molecule where each sphere represents an atom. We also give an overview of the molecular modeling package and detail additional features and implementation issues.
Resumo:
Three-dimensional models which contain both geometry and texture have numerous applications such as urban planning, physical simulation, and virtual environments. A major focus of computer vision (and recently graphics) research is the automatic recovery of three-dimensional models from two-dimensional images. After many years of research this goal is yet to be achieved. Most practical modeling systems require substantial human input and unlike automatic systems are not scalable. This thesis presents a novel method for automatically recovering dense surface patches using large sets (1000's) of calibrated images taken from arbitrary positions within the scene. Physical instruments, such as Global Positioning System (GPS), inertial sensors, and inclinometers, are used to estimate the position and orientation of each image. Essentially, the problem is to find corresponding points in each of the images. Once a correspondence has been established, calculating its three-dimensional position is simply a matter of geometry. Long baseline images improve the accuracy. Short baseline images and the large number of images greatly simplifies the correspondence problem. The initial stage of the algorithm is completely local and scales linearly with the number of images. Subsequent stages are global in nature, exploit geometric constraints, and scale quadratically with the complexity of the underlying scene. We describe techniques for: 1) detecting and localizing surface patches; 2) refining camera calibration estimates and rejecting false positive surfels; and 3) grouping surface patches into surfaces and growing the surface along a two-dimensional manifold. We also discuss a method for producing high quality, textured three-dimensional models from these surfaces. Some of the most important characteristics of this approach are that it: 1) uses and refines noisy calibration estimates; 2) compensates for large variations in illumination; 3) tolerates significant soft occlusion (e.g. tree branches); and 4) associates, at a fundamental level, an estimated normal (i.e. no frontal-planar assumption) and texture with each surface patch.
Resumo:
The report addresses the problem of visual recognition under two sources of variability: geometric and photometric. The geometric deals with the relation between 3D objects and their views under orthographic and perspective projection. The photometric deals with the relation between 3D matte objects and their images under changing illumination conditions. Taken together, an alignment-based method is presented for recognizing objects viewed from arbitrary viewing positions and illuminated by arbitrary settings of light sources.