1 resultado para Spencer, Michael--1648-1722
em Massachusetts Institute of Technology
Filtro por publicador
- Academic Research Repository at Institute of Developing Economies (5)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (2)
- Archive of European Integration (30)
- Aston University Research Archive (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- Biblioteca Valenciana Digital - Ministerio de Educación, Cultura y Deporte - Valencia - Espanha (7)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Bibloteca do Senado Federal do Brasil (11)
- Biodiversity Heritage Library, United States (28)
- Blue Tiger Commons - Lincoln University - USA (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (60)
- Brock University, Canada (14)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Cámara de Comercio de Bogotá, Colombia (1)
- CentAUR: Central Archive University of Reading - UK (29)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (8)
- Dalarna University College Electronic Archive (2)
- Digital Archives@Colby (11)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (3)
- Digital Knowledge Repository of Central Drug Research Institute (2)
- Digital Peer Publishing (5)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (102)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (40)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (81)
- Harvard University (20)
- Institute of Public Health in Ireland, Ireland (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (28)
- Ministerio de Cultura, Spain (9)
- National Center for Biotechnology Information - NCBI (3)
- Publishing Network for Geoscientific & Environmental Data (69)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (32)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (8)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- Scielo Saúde Pública - SP (8)
- Universidad Autónoma de Nuevo León, Mexico (5)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (10)
- Universidad Politécnica de Madrid (3)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (10)
- Université de Montréal (1)
- Université de Montréal, Canada (6)
- University of Michigan (216)
- University of Queensland eSpace - Australia (16)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
This paper introduces a probability model, the mixture of trees that can account for sparse, dynamically changing dependence relationships. We present a family of efficient algorithms that use EM and the Minimum Spanning Tree algorithm to find the ML and MAP mixture of trees for a variety of priors, including the Dirichlet and the MDL priors. We also show that the single tree classifier acts like an implicit feature selector, thus making the classification performance insensitive to irrelevant attributes. Experimental results demonstrate the excellent performance of the new model both in density estimation and in classification.