6 resultados para Solution of mathematical problems
em Massachusetts Institute of Technology
Resumo:
We present a technique for the rapid and reliable evaluation of linear-functional output of elliptic partial differential equations with affine parameter dependence. The essential components are (i) rapidly uniformly convergent reduced-basis approximations — Galerkin projection onto a space WN spanned by solutions of the governing partial differential equation at N (optimally) selected points in parameter space; (ii) a posteriori error estimation — relaxations of the residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs; and (iii) offline/online computational procedures — stratagems that exploit affine parameter dependence to de-couple the generation and projection stages of the approximation process. The operation count for the online stage — in which, given a new parameter value, we calculate the output and associated error bound — depends only on N (typically small) and the parametric complexity of the problem. The method is thus ideally suited to the many-query and real-time contexts. In this paper, based on the technique we develop a robust inverse computational method for very fast solution of inverse problems characterized by parametrized partial differential equations. The essential ideas are in three-fold: first, we apply the technique to the forward problem for the rapid certified evaluation of PDE input-output relations and associated rigorous error bounds; second, we incorporate the reduced-basis approximation and error bounds into the inverse problem formulation; and third, rather than regularize the goodness-of-fit objective, we may instead identify all (or almost all, in the probabilistic sense) system configurations consistent with the available experimental data — well-posedness is reflected in a bounded "possibility region" that furthermore shrinks as the experimental error is decreased.
Resumo:
Different theoretical models have tried to investigate the feasibility of recurrent neural mechanisms for achieving direction selectivity in the visual cortex. The mathematical analysis of such models has been restricted so far to the case of purely linear networks. We present an exact analytical solution of the nonlinear dynamics of a class of direction selective recurrent neural models with threshold nonlinearity. Our mathematical analysis shows that such networks have form-stable stimulus-locked traveling pulse solutions that are appropriate for modeling the responses of direction selective cortical neurons. Our analysis shows also that the stability of such solutions can break down giving raise to a different class of solutions ("lurching activity waves") that are characterized by a specific spatio-temporal periodicity. These solutions cannot arise in models for direction selectivity with purely linear spatio-temporal filtering.
Resumo:
We study the preconditioning of symmetric indefinite linear systems of equations that arise in interior point solution of linear optimization problems. The preconditioning method that we study exploits the block structure of the augmented matrix to design a similar block structure preconditioner to improve the spectral properties of the resulting preconditioned matrix so as to improve the convergence rate of the iterative solution of the system. We also propose a two-phase algorithm that takes advantage of the spectral properties of the transformed matrix to solve for the Newton directions in the interior-point method. Numerical experiments have been performed on some LP test problems in the NETLIB suite to demonstrate the potential of the preconditioning method discussed.
Resumo:
This thesis describes a methodology, a representation, and an implemented program for troubleshooting digital circuit boards at roughly the level of expertise one might expect in a human novice. Existing methods for model-based troubleshooting have not scaled up to deal with complex circuits, in part because traditional circuit models do not explicitly represent aspects of the device that troubleshooters would consider important. For complex devices the model of the target device should be constructed with the goal of troubleshooting explicitly in mind. Given that methodology, the principal contributions of the thesis are ways of representing complex circuits to help make troubleshooting feasible. Temporally coarse behavior descriptions are a particularly powerful simplification. Instantiating this idea for the circuit domain produces a vocabulary for describing digital signals. The vocabulary has a level of temporal detail sufficient to make useful predictions abut the response of the circuit while it remains coarse enough to make those predictions computationally tractable. Other contributions are principles for using these representations. Although not embodied in a program, these principles are sufficiently concrete that models can be constructed manually from existing circuit descriptions such as schematics, part specifications, and state diagrams. One such principle is that if there are components with particularly likely failure modes or failure modes in which their behavior is drastically simplified, this knowledge should be incorporated into the model. Further contributions include the solution of technical problems resulting from the use of explicit temporal representations and design descriptions with tangled hierarchies.
Resumo:
The Support Vector Machine (SVM) is a new and very promising classification technique developed by Vapnik and his group at AT&T Bell Labs. This new learning algorithm can be seen as an alternative training technique for Polynomial, Radial Basis Function and Multi-Layer Perceptron classifiers. An interesting property of this approach is that it is an approximate implementation of the Structural Risk Minimization (SRM) induction principle. The derivation of Support Vector Machines, its relationship with SRM, and its geometrical insight, are discussed in this paper. Training a SVM is equivalent to solve a quadratic programming problem with linear and box constraints in a number of variables equal to the number of data points. When the number of data points exceeds few thousands the problem is very challenging, because the quadratic form is completely dense, so the memory needed to store the problem grows with the square of the number of data points. Therefore, training problems arising in some real applications with large data sets are impossible to load into memory, and cannot be solved using standard non-linear constrained optimization algorithms. We present a decomposition algorithm that can be used to train SVM's over large data sets. The main idea behind the decomposition is the iterative solution of sub-problems and the evaluation of, and also establish the stopping criteria for the algorithm. We present previous approaches, as well as results and important details of our implementation of the algorithm using a second-order variant of the Reduced Gradient Method as the solver of the sub-problems. As an application of SVM's, we present preliminary results we obtained applying SVM to the problem of detecting frontal human faces in real images.
Resumo:
Support Vector Machines (SVMs) perform pattern recognition between two point classes by finding a decision surface determined by certain points of the training set, termed Support Vectors (SV). This surface, which in some feature space of possibly infinite dimension can be regarded as a hyperplane, is obtained from the solution of a problem of quadratic programming that depends on a regularization parameter. In this paper we study some mathematical properties of support vectors and show that the decision surface can be written as the sum of two orthogonal terms, the first depending only on the margin vectors (which are SVs lying on the margin), the second proportional to the regularization parameter. For almost all values of the parameter, this enables us to predict how the decision surface varies for small parameter changes. In the special but important case of feature space of finite dimension m, we also show that there are at most m+1 margin vectors and observe that m+1 SVs are usually sufficient to fully determine the decision surface. For relatively small m this latter result leads to a consistent reduction of the SV number.