2 resultados para Small-sample Properties

em Massachusetts Institute of Technology


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Array technologies have made it possible to record simultaneously the expression pattern of thousands of genes. A fundamental problem in the analysis of gene expression data is the identification of highly relevant genes that either discriminate between phenotypic labels or are important with respect to the cellular process studied in the experiment: for example cell cycle or heat shock in yeast experiments, chemical or genetic perturbations of mammalian cell lines, and genes involved in class discovery for human tumors. In this paper we focus on the task of unsupervised gene selection. The problem of selecting a small subset of genes is particularly challenging as the datasets involved are typically characterized by a very small sample size ?? the order of few tens of tissue samples ??d by a very large feature space as the number of genes tend to be in the high thousands. We propose a model independent approach which scores candidate gene selections using spectral properties of the candidate affinity matrix. The algorithm is very straightforward to implement yet contains a number of remarkable properties which guarantee consistent sparse selections. To illustrate the value of our approach we applied our algorithm on five different datasets. The first consists of time course data from four well studied Hematopoietic cell lines (HL-60, Jurkat, NB4, and U937). The other four datasets include three well studied treatment outcomes (large cell lymphoma, childhood medulloblastomas, breast tumors) and one unpublished dataset (lymph status). We compared our approach both with other unsupervised methods (SOM,PCA,GS) and with supervised methods (SNR,RMB,RFE). The results clearly show that our approach considerably outperforms all the other unsupervised approaches in our study, is competitive with supervised methods and in some case even outperforms supervised approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Support Vector Machines (SVMs) perform pattern recognition between two point classes by finding a decision surface determined by certain points of the training set, termed Support Vectors (SV). This surface, which in some feature space of possibly infinite dimension can be regarded as a hyperplane, is obtained from the solution of a problem of quadratic programming that depends on a regularization parameter. In this paper we study some mathematical properties of support vectors and show that the decision surface can be written as the sum of two orthogonal terms, the first depending only on the margin vectors (which are SVs lying on the margin), the second proportional to the regularization parameter. For almost all values of the parameter, this enables us to predict how the decision surface varies for small parameter changes. In the special but important case of feature space of finite dimension m, we also show that there are at most m+1 margin vectors and observe that m+1 SVs are usually sufficient to fully determine the decision surface. For relatively small m this latter result leads to a consistent reduction of the SV number.