1 resultado para Small sample asymptotics
em Massachusetts Institute of Technology
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Mid Sweden University; Sweden) (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (9)
- Aquatic Commons (14)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (36)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (10)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (48)
- Brock University, Canada (10)
- Brunel University (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (6)
- CentAUR: Central Archive University of Reading - UK (34)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (19)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (3)
- Collection Of Biostatistics Research Archive (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (3)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (6)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (13)
- DigitalCommons@The Texas Medical Center (41)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Duke University (6)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- Helda - Digital Repository of University of Helsinki (4)
- Indian Institute of Science - Bangalore - Índia (3)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico de Santarém (2)
- Instituto Politécnico de Viseu (3)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Publishing Network for Geoscientific & Environmental Data (19)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (36)
- Queensland University of Technology - ePrints Archive (293)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- REPOSITÓRIO ABERTO do Instituto Superior Miguel Torga - Portugal (3)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (14)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (39)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (2)
- School of Medicine, Washington University, United States (2)
- South Carolina State Documents Depository (1)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (12)
- Universidade Complutense de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (4)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (1)
- Université de Montréal, Canada (16)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (3)
- University of Michigan (3)
- University of Queensland eSpace - Australia (13)
- University of Washington (7)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
Array technologies have made it possible to record simultaneously the expression pattern of thousands of genes. A fundamental problem in the analysis of gene expression data is the identification of highly relevant genes that either discriminate between phenotypic labels or are important with respect to the cellular process studied in the experiment: for example cell cycle or heat shock in yeast experiments, chemical or genetic perturbations of mammalian cell lines, and genes involved in class discovery for human tumors. In this paper we focus on the task of unsupervised gene selection. The problem of selecting a small subset of genes is particularly challenging as the datasets involved are typically characterized by a very small sample size ?? the order of few tens of tissue samples ??d by a very large feature space as the number of genes tend to be in the high thousands. We propose a model independent approach which scores candidate gene selections using spectral properties of the candidate affinity matrix. The algorithm is very straightforward to implement yet contains a number of remarkable properties which guarantee consistent sparse selections. To illustrate the value of our approach we applied our algorithm on five different datasets. The first consists of time course data from four well studied Hematopoietic cell lines (HL-60, Jurkat, NB4, and U937). The other four datasets include three well studied treatment outcomes (large cell lymphoma, childhood medulloblastomas, breast tumors) and one unpublished dataset (lymph status). We compared our approach both with other unsupervised methods (SOM,PCA,GS) and with supervised methods (SNR,RMB,RFE). The results clearly show that our approach considerably outperforms all the other unsupervised approaches in our study, is competitive with supervised methods and in some case even outperforms supervised approaches.