2 resultados para Size structure

em Massachusetts Institute of Technology


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report on the process parameters of nanoimprint lithography (NIL) for the fabrication of two-dimensional (2-D) photonic crystals. The nickel mould with 2-D photonic crystal patterns covering the area up to 20mm² is produced by electron-beam lithography (EBL) and electroplating. Periodic pillars as high as 200nm to 250nm are produced on the mould with the diameters ranging from 180nm to 400nm. The mould is employed for nanoimprinting on the poly-methyl-methacrylate (PMMA) layer spin-coated on the silicon substrate. Periodic air holes are formed in PMMA above its glass-transition temperature and the patterns on the mould are well transferred. This nanometer-size structure provided by NIL is subjective to further pattern transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the absence of cues for absolute depth measurements as binocular disparity, motion, or defocus, the absolute distance between the observer and a scene cannot be measured. The interpretation of shading, edges and junctions may provide a 3D model of the scene but it will not inform about the actual "size" of the space. One possible source of information for absolute depth estimation is the image size of known objects. However, this is computationally complex due to the difficulty of the object recognition process. Here we propose a source of information for absolute depth estimation that does not rely on specific objects: we introduce a procedure for absolute depth estimation based on the recognition of the whole scene. The shape of the space of the scene and the structures present in the scene are strongly related to the scale of observation. We demonstrate that, by recognizing the properties of the structures present in the image, we can infer the scale of the scene, and therefore its absolute mean depth. We illustrate the interest in computing the mean depth of the scene with application to scene recognition and object detection.