4 resultados para Single-process Models
em Massachusetts Institute of Technology
Resumo:
“What is value in product development?” is the key question of this paper. The answer is critical to the creation of lean in product development. By knowing how much value is added by product development (PD) activities, decisions can be more rationally made about how to allocate resources, such as time and money. In order to apply the principles of Lean Thinking and remove waste from the product development system, value must be precisely defined. Unfortunately, value is a complex entity that is composed of many dimensions and has thus far eluded definition on a local level. For this reason, research has been initiated on “Measuring Value in Product Development.” This paper serves as an introduction to this research. It presents the current understanding of value in PD, the critical questions involved, and a specific research design to guide the development of a methodology for measuring value. Work in PD value currently focuses on either high-level perspectives on value, or detailed looks at the attributes that value might have locally in the PD process. Models that attempt to capture value in PD are reviewed. These methods, however, do not capture the depth necessary to allow for application. A methodology is needed to evaluate activities on a local level to determine the amount of value they add and their sensitivity with respect to performance, cost, time, and risk. Two conceptual tools are proposed. The first is a conceptual framework for value creation in PD, referred to here as the Value Creation Model. The second tool is the Value-Activity Map, which shows the relationships between specific activities and value attributes. These maps will allow a better understanding of the development of value in PD, will facilitate comparison of value development between separate projects, and will provide the information necessary to adapt process analysis tools (such as DSM) to consider value. The key questions that this research entails are: · What are the primary attributes of lifecycle value within PD? · How can one model the creation of value in a specific PD process? · Can a useful methodology be developed to quantify value in PD processes? · What are the tools necessary for application? · What PD metrics will be integrated with the necessary tools? The research milestones are: · Collection of value attributes and activities (September, 200) · Development of methodology of value-activity association (October, 2000) · Testing and refinement of the methodology (January, 2001) · Tool Development (March, 2001) · Present findings at July INCOSE conference (April, 2001) · Deliver thesis that captures a formalized methodology for defining value in PD (including LEM data sheets) (June, 2001) The research design aims for the development of two primary deliverables: a methodology to guide the incorporation of value, and a product development tool that will allow direct application.
Resumo:
In model-based vision, there are a huge number of possible ways to match model features to image features. In addition to model shape constraints, there are important match-independent constraints that can efficiently reduce the search without the combinatorics of matching. I demonstrate two specific modules in the context of a complete recognition system, Reggie. The first is a region-based grouping mechanism to find groups of image features that are likely to come from a single object. The second is an interpretive matching scheme to make explicit hypotheses about occlusion and instabilities in the image features.
Resumo:
As the number of processors in distributed-memory multiprocessors grows, efficiently supporting a shared-memory programming model becomes difficult. We have designed the Protocol for Hierarchical Directories (PHD) to allow shared-memory support for systems containing massive numbers of processors. PHD eliminates bandwidth problems by using a scalable network, decreases hot-spots by not relying on a single point to distribute blocks, and uses a scalable amount of space for its directories. PHD provides a shared-memory model by synthesizing a global shared memory from the local memories of processors. PHD supports sequentially consistent read, write, and test- and-set operations. This thesis also introduces a method of describing locality for hierarchical protocols and employs this method in the derivation of an abstract model of the protocol behavior. An embedded model, based on the work of Johnson[ISCA19], describes the protocol behavior when mapped to a k-ary n-cube. The thesis uses these two models to study the average height in the hierarchy that operations reach, the longest path messages travel, the number of messages that operations generate, the inter-transaction issue time, and the protocol overhead for different locality parameters, degrees of multithreading, and machine sizes. We determine that multithreading is only useful for approximately two to four threads; any additional interleaving does not decrease the overall latency. For small machines and high locality applications, this limitation is due mainly to the length of the running threads. For large machines with medium to low locality, this limitation is due mainly to the protocol overhead being too large. Our study using the embedded model shows that in situations where the run length between references to shared memory is at least an order of magnitude longer than the time to process a single state transition in the protocol, applications exhibit good performance. If separate controllers for processing protocol requests are included, the protocol scales to 32k processor machines as long as the application exhibits hierarchical locality: at least 22% of the global references must be able to be satisfied locally; at most 35% of the global references are allowed to reach the top level of the hierarchy.
Resumo:
We present a statistical image-based shape + structure model for Bayesian visual hull reconstruction and 3D structure inference. The 3D shape of a class of objects is represented by sets of contours from silhouette views simultaneously observed from multiple calibrated cameras. Bayesian reconstructions of new shapes are then estimated using a prior density constructed with a mixture model and probabilistic principal components analysis. We show how the use of a class-specific prior in a visual hull reconstruction can reduce the effect of segmentation errors from the silhouette extraction process. The proposed method is applied to a data set of pedestrian images, and improvements in the approximate 3D models under various noise conditions are shown. We further augment the shape model to incorporate structural features of interest; unknown structural parameters for a novel set of contours are then inferred via the Bayesian reconstruction process. Model matching and parameter inference are done entirely in the image domain and require no explicit 3D construction. Our shape model enables accurate estimation of structure despite segmentation errors or missing views in the input silhouettes, and works even with only a single input view. Using a data set of thousands of pedestrian images generated from a synthetic model, we can accurately infer the 3D locations of 19 joints on the body based on observed silhouette contours from real images.