5 resultados para Shaping

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a method for limiting vibration in flexible systems by shaping the system inputs. Unlike most previous attempts at input shaping, this method does not require an extensive system model or lengthy numerical computation; only knowledge of the system natural frequency and damping ratio are required. The effectiveness of this method when there are errors in the system model is explored and quantified. An algorithm is presented which, given an upper bound on acceptable residual vibration amplitude, determines a shaping strategy that is insensitive to errors in the estimated natural frequency. A procedure for shaping inputs to systems with input constraints is outlined. The shaping method is evaluated by dynamic simulations and hardware experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Future NASA plans to launch large space strucutres solicit the need for effective vibration control schemes which can solve the unique problems associated with unwanted residual vibration in flexible spacecraft. In this work, a unique method of input command shaping called impulse shaping is examined. A theoretical background is presented along with some insight into the methdos of calculating multiple mode sequences. The Middeck Active Control Experiment (MACE) is then described as the testbed for hardware experiments. These results are shown and some of the difficulties of dealing with nonlinearities are discussed. The paper is concluded with some conclusions about calculating and implementing impulse shaping in complex nonlinear systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Residual vibrations degrade the performance of many systems. Due to the lightweight and flexible nature of space structures, controlling residual vibrations is especially difficult. Also, systems such as the Space Shuttle remote Manipulator System have frequencies that vary significantly based upon configuration and loading. Recently, a technique of minimizing vibrations in flexible structures by command input shaping was developed. This document presents research completed in developing a simple, closed- form method of calculating input shaping sequences for two-mode systems and a system to adapt the command input shaping technique to known changes in system frequency about the workspace. The new techniques were tested on a three-link, flexible manipulator.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prior research has led to the development of input command shapers that can reduce residual vibration in single- or multiple-mode flexible systems. We present a method for the development of multiple-mode shapers which are simpler to implement and produce smaller response delays than previous designs. An MIT / NASA experimental flexible structure, MACE, is employed as a test article for the validation of the new shaping method. We examine the results of tests conducted on simulations of MACE. The new shapers are shown to be effective in suppressing multiple-mode vibration, even in the presence of mild kinematic and dynamic non-linearities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Control of machines that exhibit flexibility becomes important when designers attempt to push the state of the art with faster, lighter machines. Three steps are necessary for the control of a flexible planet. First, a good model of the plant must exist. Second, a good controller must be designed. Third, inputs to the controller must be constructed using knowledge of the system dynamic response. There is a great deal of literature pertaining to modeling and control but little dealing with the shaping of system inputs. Chapter 2 examines two input shaping techniques based on frequency domain analysis. The first involves the use of the first deriviate of a gaussian exponential as a driving function template. The second, acasual filtering, involves removal of energy from the driving functions at the resonant frequencies of the system. Chapter 3 presents a linear programming technique for generating vibration-reducing driving functions for systems. Chapter 4 extends the results of the previous chapter by developing a direct solution to the new class of driving functions. A detailed analysis of the new technique is presented from five different perspectives and several extensions are presented. Chapter 5 verifies the theories of the previous two chapters with hardware experiments. Because the new technique resembles common signal filtering, chapter 6 compares the new approach to eleven standard filters. The new technique will be shown to result in less residual vibrations, have better robustness to system parameter uncertainty, and require less computation than other currently used shaping techniques.